Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System , Reno, NV, USA.
Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
J Gen Physiol. 2023 Nov 6;155(11). doi: 10.1085/jgp.202213217. Epub 2023 Sep 13.
Pulmonary arterial (PA) smooth muscle cells (PASMC) generate vascular tone in response to agonists coupled to Gq-protein receptor signaling. Such agonists stimulate oscillating calcium waves, the frequency of which drives the strength of contraction. These Ca2+ events are modulated by a variety of ion channels including voltage-gated calcium channels (CaV1.2), the Tmem16a or Anoctamin-1 (ANO1)-encoded calcium-activated chloride (CaCC) channel, and Ca2+ release from the sarcoplasmic reticulum through inositol-trisphosphate receptors (IP3R). Although these calcium events have been characterized, it is unclear how these calcium oscillations underly a sustained contraction in these muscle cells. We used smooth muscle-specific ablation of ANO1 and pharmacological tools to establish the role of ANO1, CaV1.2, and IP3R in the contractile and intracellular Ca2+ signaling properties of mouse PA smooth muscle expressing the Ca2+ biosensor GCaMP3 or GCaMP6. Pharmacological block or genetic ablation of ANO1 or inhibition of CaV1.2 or IP3R, or Ca2+ store depletion equally inhibited 5-HT-induced tone and intracellular Ca2+ waves. Coimmunoprecipitation experiments showed that an anti-ANO1 antibody was able to pull down both CaV1.2 and IP3R. Confocal and superresolution nanomicroscopy showed that ANO1 coassembles with both CaV1.2 and IP3R at or near the plasma membrane of PASMC from wild-type mice. We conclude that the stable 5-HT-induced PA contraction results from the integration of stochastic and localized Ca2+ events supported by a microenvironment comprising ANO1, CaV1.2, and IP3R. In this model, ANO1 and CaV1.2 would indirectly support cyclical Ca2+ release events from IP3R and propagation of intracellular Ca2+ waves.
肺血管平滑肌细胞(PASMC)在 Gq 蛋白偶联受体信号转导的激动剂作用下产生血管张力。这种激动剂刺激振荡的钙波,其频率驱动收缩强度。这些 Ca2+事件受多种离子通道的调节,包括电压门控钙通道(CaV1.2)、Tmem16a 或 Anoctamin-1(ANO1)编码的钙激活氯离子(CaCC)通道以及肌浆网通过三磷酸肌醇受体(IP3R)释放 Ca2+。尽管已经对这些钙事件进行了描述,但尚不清楚这些钙振荡如何构成这些肌肉细胞中的持续收缩。我们使用平滑肌特异性 ANO1 消融和药理学工具,建立了 ANO1、CaV1.2 和 IP3R 在表达 Ca2+ 生物传感器 GCaMP3 或 GCaMP6 的小鼠 PA 平滑肌的收缩和细胞内 Ca2+ 信号特性中的作用。ANO1 的药理学阻断或基因消融或 CaV1.2 或 IP3R 的抑制,或 Ca2+ 储存耗竭,同样抑制 5-HT 诱导的张力和细胞内 Ca2+ 波。共免疫沉淀实验表明,抗 ANO1 抗体能够拉下 CaV1.2 和 IP3R。共聚焦和超分辨率纳米显微镜显示,ANO1 在来自野生型小鼠的 PASMC 的质膜上或附近与 CaV1.2 和 IP3R 共组装。我们的结论是,稳定的 5-HT 诱导的 PA 收缩是由 ANO1、CaV1.2 和 IP3R 组成的微环境支持的随机和局部 Ca2+ 事件的整合产生的。在这个模型中,ANO1 和 CaV1.2 将间接支持 IP3R 的周期性 Ca2+ 释放事件和细胞内 Ca2+ 波的传播。
Am J Physiol Cell Physiol. 2016-6-1
Am J Physiol Renal Physiol. 2021-4-1
Front Mol Biosci. 2025-3-19
Int J Mol Sci. 2024-11-19
Korean J Physiol Pharmacol. 2025-3-1
Cell Calcium. 2024-7
Curr Opin Nephrol Hypertens. 2024-3-1
J Physiol. 2024-4
Front Physiol. 2021-11-19
Am J Physiol Cell Physiol. 2021-8-1
Int J Mol Sci. 2021-4-15
Commun Biol. 2021-2-26
Am J Physiol Heart Circ Physiol. 2021-3-1
Sci Signal. 2020-4-28
Proc Natl Acad Sci U S A. 2019-10-7