Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil; Centre for Systems Neuroscience, University of Leicester, Leicester, UK.
Centre for Systems Neuroscience, University of Leicester, Leicester, UK.
J Neurosci Methods. 2018 Feb 15;296:12-22. doi: 10.1016/j.jneumeth.2017.12.014. Epub 2017 Dec 23.
Over 90 years after its first recording, scalp electroencephalography (EEG) remains one of the most widely used techniques in human neuroscience research, in particular for the study of event-related potentials (ERPs). However, because of its low signal-to-noise ratio, extracting useful information from these signals continues to be a hard-technical challenge. Many studies focus on simple properties of the ERPs such as peaks, latencies, and slopes of signal deflections.
To overcome these limitations, we developed the Wavelet-Information method which uses wavelet decomposition, information theory, and a quantification based on single-trial decoding performance to extract information from evoked responses.
Using simulations and real data from four experiments, we show that the proposed approach outperforms standard supervised analyses based on peak amplitude estimation. Moreover, the method can extract information using the raw data from all recorded channels using no a priori knowledge or pre-processing steps.
COMPARISON WITH EXISTING METHOD(S): We show that traditional approaches often disregard important features of the signal such as the shape of EEG waveforms. Also, other approaches often require some form of a priori knowledge for feature selection and lead to problems of multiple comparisons.
This approach offers a new and complementary framework to design experiments that go beyond the traditional analyses of ERPs. Potentially, it allows a wide usage beyond basic research; such as for clinical diagnosis, brain-machine interfaces, and neurofeedback applications requiring single-trial analyses.
头皮脑电图(EEG)自首次记录以来已超过 90 年,仍是人类神经科学研究中使用最广泛的技术之一,特别是在事件相关电位(ERP)研究方面。然而,由于其信噪比低,从这些信号中提取有用信息仍然是一个具有挑战性的技术难题。许多研究都集中在 ERP 的简单属性上,如信号偏移的峰值、潜伏期和斜率。
为了克服这些限制,我们开发了基于小波信息的方法,该方法使用小波分解、信息论和基于单试解码性能的量化来从诱发反应中提取信息。
使用四个实验的模拟和真实数据,我们表明,与基于峰值幅度估计的标准监督分析相比,所提出的方法具有更好的性能。此外,该方法可以使用所有记录通道的原始数据进行信息提取,而无需先验知识或预处理步骤。
我们表明,传统方法通常会忽略信号的重要特征,例如 EEG 波形的形状。此外,其他方法通常需要某种形式的先验知识来进行特征选择,并且会导致多重比较的问题。
该方法为设计实验提供了一个新的、互补的框架,可以超越传统的 ERP 分析。它有可能在广泛的领域得到应用,例如临床诊断、脑机接口和神经反馈应用,这些应用都需要进行单试分析。