Suppr超能文献

残留木质聚合物有助于将微纤化纤维素与聚乳酸复合用于3D打印长丝。

Residual wood polymers facilitate compounding of microfibrillated cellulose with poly(lactic acid) for 3D printer filaments.

作者信息

Winter Armin, Mundigler Norbert, Holzweber Julian, Veigel Stefan, Müller Ulrich, Kovalcik Adriana, Gindl-Altmutter Wolfgang

机构信息

Department of Materials Science and Process Engineering, BOKU-University of Natural Resources and Life Science Vienna, Konrad Lorenz Strasse 24, 3430 Tulln, Austria.

Department of Agrobiotechnology, BOKU-University of Natural Resources and Life Science Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria.

出版信息

Philos Trans A Math Phys Eng Sci. 2018 Feb 13;376(2112). doi: 10.1098/rsta.2017.0046.

Abstract

Microfibrillated cellulose (MFC) is a fascinating material with an obvious potential for composite reinforcement due to its excellent mechanics together with high specific surface area. However, in order to use this potential, commercially viable solutions to important technological challenges have to be found. Notably, the distinct hydrophilicity of MFC prevents efficient drying without loss in specific surface area, necessitating storage and processing in wet condition. This greatly hinders compounding with important technical polymers immiscible with water. Differently from cellulose, the chemistry of the major wood polymers lignin and hemicellulose is much more diverse in terms of functional groups. Specifically, the aromatic moieties present in lignin and acetyl groups in hemicellulose provide distinctly less polar surface-chemical functionality compared to hydroxyl groups which dominate the surface-chemical character of cellulose. It is shown that considerable advantages in the production of MFC-filled poly(lactic acid) filaments for three-dimensional printing can be obtained through the use of MFC containing residual lignin and hemicellulose due to their advantageous surface-chemical characteristics. Specifically, considerably reduced agglomerations of MFC in the filaments in combination with improved printability and improved toughness of printed objects are achieved.This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'.

摘要

微纤化纤维素(MFC)是一种引人入胜的材料,由于其优异的力学性能和高比表面积,在复合增强方面具有明显的潜力。然而,为了发挥这种潜力,必须找到应对重要技术挑战的商业可行解决方案。值得注意的是,MFC独特的亲水性使得在不损失比表面积的情况下难以有效干燥,因此需要在潮湿条件下储存和加工。这极大地阻碍了它与与水不混溶的重要工程聚合物的复合。与纤维素不同,主要木材聚合物木质素和半纤维素的化学性质在官能团方面更加多样化。具体而言,与主导纤维素表面化学性质的羟基相比,木质素中存在的芳香部分和半纤维素中的乙酰基提供的极性表面化学官能团明显更少。研究表明,由于含有残留木质素和半纤维素的MFC具有有利的表面化学特性,在用于三维打印的MFC填充聚乳酸长丝的生产中可以获得相当大的优势。具体而言,实现了长丝中MFC的团聚显著减少,同时打印性和打印物体的韧性得到改善。本文是“纤维素纳米技术的新视野”讨论会议专题的一部分。

相似文献

1
Residual wood polymers facilitate compounding of microfibrillated cellulose with poly(lactic acid) for 3D printer filaments.
Philos Trans A Math Phys Eng Sci. 2018 Feb 13;376(2112). doi: 10.1098/rsta.2017.0046.
2
Compatibility between cellulose and hydrophobic polymer provided by microfibrillated lignocellulose.
ChemSusChem. 2015 Jan;8(1):87-91. doi: 10.1002/cssc.201402742. Epub 2014 Oct 27.
4
A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood.
J Phys Chem B. 2010 Apr 1;114(12):4178-82. doi: 10.1021/jp911272m.
5
Cellulose, hemicellulose, lignin, and their derivatives as multi-components of bio-based feedstocks for 3D printing.
Carbohydr Polym. 2020 Dec 15;250:116881. doi: 10.1016/j.carbpol.2020.116881. Epub 2020 Aug 13.
7
Surface-modified and oven-dried microfibrillated cellulose reinforced biocomposites: Cellulose network enabled high performance.
Carbohydr Polym. 2021 Mar 15;256:117525. doi: 10.1016/j.carbpol.2020.117525. Epub 2020 Dec 28.
8
Effect of stretching on the mechanical properties in melt-spun poly(butylene succinate)/microfibrillated cellulose (MFC) nanocomposites.
Carbohydr Polym. 2016 Apr 20;140:383-92. doi: 10.1016/j.carbpol.2015.12.040. Epub 2015 Dec 24.
9
Incorporation of microfibrillated cellulose into collagen-hydroxyapatite scaffold for bone tissue engineering.
Int J Biol Macromol. 2018 Aug;115:385-392. doi: 10.1016/j.ijbiomac.2018.04.085. Epub 2018 Apr 17.
10
Lignin-Based Direct Ink Printed Structural Scaffolds.
Small. 2020 Aug;16(31):e1907212. doi: 10.1002/smll.201907212. Epub 2020 Jun 28.

引用本文的文献

3
Surface and Interface Engineering for Nanocellulosic Advanced Materials.
Adv Mater. 2021 Jul;33(28):e2002264. doi: 10.1002/adma.202002264. Epub 2020 Sep 9.
4
New horizons for cellulose nanotechnology.
Philos Trans A Math Phys Eng Sci. 2018 Feb 13;376(2112). doi: 10.1098/rsta.2017.0200.

本文引用的文献

1
1000 at 1000: reflecting on "Review: Current international research into cellulose nanofibres and nanocomposites".
J Mater Sci. 2020;55(27):12637-12641. doi: 10.1007/s10853-020-04961-4. Epub 2020 Jun 22.
3
Cellulose nanofibrils as filler for adhesives: effect on specific fracture energy of solid wood-adhesive bonds.
Cellulose (Lond). 2011;18(5):1227-1237. doi: 10.1007/s10570-011-9576-1. Epub 2011 Jul 15.
4
Surface and structure characteristics, self-assembling, and solvent compatibility of holocellulose nanofibrils.
ACS Appl Mater Interfaces. 2015 Feb 25;7(7):4192-201. doi: 10.1021/am5079489. Epub 2015 Feb 13.
5
Compatibility between cellulose and hydrophobic polymer provided by microfibrillated lignocellulose.
ChemSusChem. 2015 Jan;8(1):87-91. doi: 10.1002/cssc.201402742. Epub 2014 Oct 27.
6
Water redispersible dried nanofibrillated cellulose by adding sodium chloride.
Biomacromolecules. 2012 Dec 10;13(12):4118-25. doi: 10.1021/bm301378n. Epub 2012 Nov 9.
7
Nanocelluloses: a new family of nature-based materials.
Angew Chem Int Ed Engl. 2011 Jun 6;50(24):5438-66. doi: 10.1002/anie.201001273. Epub 2011 May 20.
8
Cellulose nanomaterials review: structure, properties and nanocomposites.
Chem Soc Rev. 2011 Jul;40(7):3941-94. doi: 10.1039/c0cs00108b. Epub 2011 May 12.
9
An overview of the recent developments in polylactide (PLA) research.
Bioresour Technol. 2010 Nov;101(22):8493-501. doi: 10.1016/j.biortech.2010.05.092. Epub 2010 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验