Suppr超能文献

用于 MHC Ⅱ类结合预测方法的自动化基准测试平台。

An automated benchmarking platform for MHC class II binding prediction methods.

机构信息

Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CP1650, San Martín, Buenos Aires, Argentina.

Evaxion Biotech, DK-2200 Copenhagen N, Denmark.

出版信息

Bioinformatics. 2018 May 1;34(9):1522-1528. doi: 10.1093/bioinformatics/btx820.

Abstract

MOTIVATION

Computational methods for the prediction of peptide-MHC binding have become an integral and essential component for candidate selection in experimental T cell epitope discovery studies. The sheer amount of published prediction methods-and often discordant reports on their performance-poses a considerable quandary to the experimentalist who needs to choose the best tool for their research.

RESULTS

With the goal to provide an unbiased, transparent evaluation of the state-of-the-art in the field, we created an automated platform to benchmark peptide-MHC class II binding prediction tools. The platform evaluates the absolute and relative predictive performance of all participating tools on data newly entered into the Immune Epitope Database (IEDB) before they are made public, thereby providing a frequent, unbiased assessment of available prediction tools. The benchmark runs on a weekly basis, is fully automated, and displays up-to-date results on a publicly accessible website. The initial benchmark described here included six commonly used prediction servers, but other tools are encouraged to join with a simple sign-up procedure. Performance evaluation on 59 data sets composed of over 10 000 binding affinity measurements suggested that NetMHCIIpan is currently the most accurate tool, followed by NN-align and the IEDB consensus method.

AVAILABILITY AND IMPLEMENTATION

Weekly reports on the participating methods can be found online at: http://tools.iedb.org/auto_bench/mhcii/weekly/.

CONTACT

mniel@bioinformatics.dtu.dk.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

用于预测肽-MHC 结合的计算方法已成为实验性 T 细胞表位发现研究中候选物选择的一个不可或缺的组成部分。大量已发表的预测方法-以及关于其性能的经常不一致的报告-给需要为其研究选择最佳工具的实验人员带来了相当大的困境。

结果

为了提供对该领域最新技术的公正、透明的评估,我们创建了一个自动平台来对肽-MHC 类 II 结合预测工具进行基准测试。该平台在数据公开之前,对所有新输入到免疫表位数据库 (IEDB) 的数据评估所有参与工具的绝对和相对预测性能,从而对可用的预测工具进行频繁、公正的评估。基准测试每周运行一次,完全自动化,并在公共可访问的网站上显示最新结果。这里描述的初始基准测试包括六个常用的预测服务器,但其他工具可以通过简单的注册程序加入。对由超过 10000 个结合亲和力测量值组成的 59 个数据集进行的性能评估表明,目前 NetMHCIIpan 是最准确的工具,其次是 NN-align 和 IEDB 共识方法。

可用性和实现

每周报告参与方法的情况可在以下网址找到:http://tools.iedb.org/auto_bench/mhcii/weekly/。

联系方式

mniel@bioinformatics.dtu.dk

补充信息

补充数据可在生物信息学在线获得。

相似文献

2

引用本文的文献

7
MHCII-peptide presentation: an assessment of the state-of-the-art prediction methods.MHCII-肽呈递:对最新预测方法的评估
Front Immunol. 2024 Mar 12;15:1293706. doi: 10.3389/fimmu.2024.1293706. eCollection 2024.
9
Immunogenicity Assessment of Therapeutic Peptides.治疗性肽的免疫原性评估。
Curr Med Chem. 2024;31(26):4100-4110. doi: 10.2174/0109298673264899231206093930.

本文引用的文献

7
8
The immune epitope database (IEDB) 3.0.免疫表位数据库(IEDB)3.0
Nucleic Acids Res. 2015 Jan;43(Database issue):D405-12. doi: 10.1093/nar/gku938. Epub 2014 Oct 9.
10
Pathways of antigen processing.抗原加工途径。
Annu Rev Immunol. 2013;31:443-73. doi: 10.1146/annurev-immunol-032712-095910. Epub 2013 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验