Suppr超能文献

MHCII-肽呈递:对最新预测方法的评估

MHCII-peptide presentation: an assessment of the state-of-the-art prediction methods.

作者信息

Yang Yaqing, Wei Zhonghui, Cia Gabriel, Song Xixi, Pucci Fabrizio, Rooman Marianne, Xue Fuzhong, Hou Qingzhen

机构信息

Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.

National Institute of Health Data Science of China, Shandong University, Jinan, China.

出版信息

Front Immunol. 2024 Mar 12;15:1293706. doi: 10.3389/fimmu.2024.1293706. eCollection 2024.

Abstract

Major histocompatibility complex Class II (MHCII) proteins initiate and regulate immune responses by presentation of antigenic peptides to CD4+ T-cells and self-restriction. The interactions between MHCII and peptides determine the specificity of the immune response and are crucial in immunotherapy and cancer vaccine design. With the ever-increasing amount of MHCII-peptide binding data available, many computational approaches have been developed for MHCII-peptide interaction prediction over the last decade. There is thus an urgent need to provide an up-to-date overview and assessment of these newly developed computational methods. To benchmark the prediction performance of these methods, we constructed an independent dataset containing binding and non-binding peptides to 20 human MHCII protein allotypes from the Immune Epitope Database, covering DP, DR and DQ alleles. After collecting 11 known predictors up to January 2022, we evaluated those available through a webserver or standalone packages on this independent dataset. The benchmarking results show that MixMHC2pred and NetMHCIIpan-4.1 achieve the best performance among all predictors. In general, newly developed methods perform better than older ones due to the rapid expansion of data on which they are trained and the development of deep learning algorithms. Our manuscript not only draws a full picture of the state-of-art of MHCII-peptide binding prediction, but also guides researchers in the choice among the different predictors. More importantly, it will inspire biomedical researchers in both academia and industry for the future developments in this field.

摘要

主要组织相容性复合体II类(MHCII)蛋白通过将抗原肽呈递给CD4+T细胞并进行自我限制来启动和调节免疫反应。MHCII与肽之间的相互作用决定了免疫反应的特异性,在免疫治疗和癌症疫苗设计中至关重要。随着可用的MHCII-肽结合数据不断增加,在过去十年中已经开发了许多计算方法来预测MHCII-肽的相互作用。因此,迫切需要对这些新开发的计算方法进行最新的概述和评估。为了对这些方法的预测性能进行基准测试,我们构建了一个独立的数据集,其中包含来自免疫表位数据库的与20种人类MHCII蛋白同种异型的结合和非结合肽,涵盖DP、DR和DQ等位基因。在收集了截至2022年1月的11种已知预测器后,我们在这个独立数据集上评估了通过网络服务器或独立软件包可用的那些预测器。基准测试结果表明,MixMHC2pred和NetMHCIIpan-4.1在所有预测器中表现最佳。一般来说,由于新开发方法所训练的数据迅速扩展以及深度学习算法的发展,它们比旧方法表现得更好。我们的手稿不仅全面描绘了MHCII-肽结合预测的最新状态,还指导研究人员在不同预测器之间进行选择。更重要的是,它将激励学术界和工业界的生物医学研究人员在该领域进行未来的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b14/11027168/d899a7a619be/fimmu-15-1293706-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验