Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, 20132 Milan, Italy.
Hum Mol Genet. 2018 Mar 1;27(5):761-779. doi: 10.1093/hmg/ddx438.
P23H is the most common mutation in the RHODOPSIN (RHO) gene leading to a dominant form of retinitis pigmentosa (RP), a rod photoreceptor degeneration that invariably causes vision loss. Specific disruption of the disease P23H RHO mutant while preserving the wild-type (WT) functional allele would be an invaluable therapy for this disease. However, various technologies tested in the past failed to achieve effective changes and consequently therapeutic benefits. We validated a CRISPR/Cas9 strategy to specifically inactivate the P23H RHO mutant, while preserving the WT allele in vitro. We, then, translated this approach in vivo by delivering the CRISPR/Cas9 components in murine Rho+/P23H mutant retinae. Targeted retinae presented a high rate of cleavage in the P23H but not WT Rho allele. This gene manipulation was sufficient to slow photoreceptor degeneration and improve retinal functions. To improve the translational potential of our approach, we tested intravitreal delivery of this system by means of adeno-associated viruses (AAVs). To this purpose, the employment of the AAV9-PHP.B resulted the most effective in disrupting the P23H Rho mutant. Finally, this approach was translated successfully in human cells engineered with the homozygous P23H RHO gene mutation. Overall, this is a significant proof-of-concept that gene allele specific targeting by CRISPR/Cas9 technology is specific and efficient and represents an unprecedented tool for treating RP and more broadly dominant genetic human disorders affecting the eye, as well as other tissues.
P23H 是导致常染色体显性遗传视网膜色素变性(RP)的 RHODOPSIN(RHO)基因突变中最常见的突变,是一种 rod 光感受器变性,不可避免地导致视力丧失。特定地破坏疾病 P23H RHO 突变体,同时保留野生型(WT)功能等位基因,将是这种疾病非常宝贵的治疗方法。然而,过去测试的各种技术都未能实现有效的改变,因此也没有带来治疗益处。我们验证了一种 CRISPR/Cas9 策略,可特异性地使 P23H RHO 突变体失活,同时在体外保留 WT 等位基因。然后,我们通过将 CRISPR/Cas9 组件递送至鼠 Rho+/P23H 突变型视网膜中来将这种方法转化为体内。靶向视网膜中 P23H 但不是 WT Rho 等位基因的切割率很高。这种基因操作足以减缓光感受器变性并改善视网膜功能。为了提高我们方法的转化潜力,我们通过腺相关病毒(AAV)测试了这种系统的玻璃体内递送。为此,AAV9-PHP.B 的使用在破坏 P23H Rho 突变体方面最为有效。最后,这种方法成功地转化为具有 P23H RHO 基因突变的同源纯合人细胞。总的来说,这是一个重要的概念验证,即 CRISPR/Cas9 技术的基因等位基因特异性靶向是特异性和高效性的,并代表了治疗 RP 以及更广泛地影响眼睛和其他组织的显性遗传人类疾病的前所未有的工具。