Suppr超能文献

用于 pan 特异性肽-MHC 类 I 结合预测的深度卷积神经网络。

Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.

机构信息

Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.

Department of Convergence Technology Research, Korea Institute of Science and Technology Information, Daejeon, Republic of Korea.

出版信息

BMC Bioinformatics. 2017 Dec 28;18(1):585. doi: 10.1186/s12859-017-1997-x.

Abstract

BACKGROUND

Computational scanning of peptide candidates that bind to a specific major histocompatibility complex (MHC) can speed up the peptide-based vaccine development process and therefore various methods are being actively developed. Recently, machine-learning-based methods have generated successful results by training large amounts of experimental data. However, many machine learning-based methods are generally less sensitive in recognizing locally-clustered interactions, which can synergistically stabilize peptide binding. Deep convolutional neural network (DCNN) is a deep learning method inspired by visual recognition process of animal brain and it is known to be able to capture meaningful local patterns from 2D images. Once the peptide-MHC interactions can be encoded into image-like array(ILA) data, DCNN can be employed to build a predictive model for peptide-MHC binding prediction. In this study, we demonstrated that DCNN is able to not only reliably predict peptide-MHC binding, but also sensitively detect locally-clustered interactions.

RESULTS

Nonapeptide-HLA-A and -B binding data were encoded into ILA data. A DCNN, as a pan-specific prediction model, was trained on the ILA data. The DCNN showed higher performance than other prediction tools for the latest benchmark datasets, which consist of 43 datasets for 15 HLA-A alleles and 25 datasets for 10 HLA-B alleles. In particular, the DCNN outperformed other tools for alleles belonging to the HLA-A3 supertype. The F1 scores of the DCNN were 0.86, 0.94, and 0.67 for HLA-A31:01, HLA-A03:01, and HLA-A*68:01 alleles, respectively, which were significantly higher than those of other tools. We found that the DCNN was able to recognize locally-clustered interactions that could synergistically stabilize peptide binding. We developed ConvMHC, a web server to provide user-friendly web interfaces for peptide-MHC class I binding predictions using the DCNN. ConvMHC web server can be accessible via http://jumong.kaist.ac.kr:8080/convmhc .

CONCLUSIONS

We developed a novel method for peptide-HLA-I binding predictions using DCNN trained on ILA data that encode peptide binding data and demonstrated the reliable performance of the DCNN in nonapeptide binding predictions through the independent evaluation on the latest IEDB benchmark datasets. Our approaches can be applied to characterize locally-clustered patterns in molecular interactions, such as protein/DNA, protein/RNA, and drug/protein interactions.

摘要

背景

通过对与特定主要组织相容性复合体 (MHC) 结合的肽候选物进行计算扫描,可以加快基于肽的疫苗开发过程,因此各种方法正在积极开发中。最近,基于机器学习的方法通过训练大量实验数据取得了成功的结果。然而,许多基于机器学习的方法通常在识别协同稳定肽结合的局部聚集相互作用方面的敏感性较低。深度卷积神经网络 (DCNN) 是一种受动物大脑视觉识别过程启发的深度学习方法,它能够从 2D 图像中捕获有意义的局部模式。一旦将肽-MHC 相互作用编码为图像状数组 (ILA) 数据,就可以使用 DCNN 构建用于预测肽-MHC 结合的预测模型。在这项研究中,我们证明 DCNN 不仅能够可靠地预测肽-MHC 结合,而且能够灵敏地检测局部聚集的相互作用。

结果

将九肽-HLA-A 和 -B 结合数据编码为 ILA 数据。作为泛特异性预测模型的 DCNN 基于 ILA 数据进行训练。该 DCNN 显示出比其他预测工具更高的性能,用于最新的基准数据集,该数据集由 15 个 HLA-A 等位基因的 43 个数据集和 10 个 HLA-B 等位基因的 25 个数据集组成。特别是,对于属于 HLA-A3 超型的等位基因,DCNN 优于其他工具。DCNN 对 HLA-A31:01、HLA-A03:01 和 HLA-A*68:01 等位基因的 F1 分数分别为 0.86、0.94 和 0.67,明显高于其他工具。我们发现 DCNN 能够识别协同稳定肽结合的局部聚集相互作用。我们开发了 ConvMHC,这是一个基于 DCNN 的网络服务器,用于使用 DCNN 提供肽-MHC 类 I 结合预测的用户友好型网络界面。ConvMHC 网络服务器可通过 http://jumong.kaist.ac.kr:8080/convmhc 访问。

结论

我们使用基于 DCNN 的 ILA 数据开发了一种用于肽-HLA-I 结合预测的新方法,该方法通过对最新的 IEDB 基准数据集进行独立评估,证明了 DCNN 在九肽结合预测中的可靠性能。我们的方法可应用于表征分子相互作用中的局部聚集模式,例如蛋白质/DNA、蛋白质/RNA 和药物/蛋白质相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/446d/5745637/f56bb1ab2c4f/12859_2017_1997_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验