Environmental Studies Program, Colby College, Waterville, ME, USA.
Institute at Brown for Environment and Society, Brown University, Providence, RI, USA.
Glob Chang Biol. 2018 Mar;24(3):933-943. doi: 10.1111/gcb.14036. Epub 2018 Jan 22.
Tropical secondary forests (TSF) are a global carbon sink of 1.6 Pg C/year. However, TSF carbon uptake is estimated using chronosequence studies that assume differently aged forests can be used to predict change in aboveground biomass density (AGBD) over time. We tested this assumption using two airborne lidar datasets separated by 11.5 years over a Neotropical landscape. Using data from 1998, we predicted canopy height and AGBD within 1.1 and 10.3% of observations in 2009, with higher accuracy for forest height than AGBD and for older TSFs in comparison to younger ones. This result indicates that the space-for-time assumption is robust at the landscape-scale. However, since lidar measurements of secondary tropical forest are rare, we used the 1998 lidar dataset to test how well plot-based studies quantify the mean TSF height and biomass in a landscape. We found that the sample area required to produce estimates of height or AGBD close to the landscape mean is larger than the typical area sampled in secondary forest chronosequence studies. For example, estimating AGBD within 10% of the landscape mean requires more than thirty 0.1 ha plots per age class, and more total area for larger plots. We conclude that under-sampling in ground-based studies may introduce error into estimations of the TSF carbon sink, and that this error can be reduced by more extensive use of lidar measurements.
热带次生林(TSF)是全球每年 1.6PgC 的碳汇。然而,TSF 碳吸收量是通过年代序列研究来估算的,这些研究假设不同年龄的森林可以用来预测随着时间的推移地上生物量密度(AGBD)的变化。我们使用两块覆盖新热带地区的机载激光雷达数据集,通过 11.5 年的时间间隔来检验这一假设。利用 1998 年的数据,我们预测了 2009 年的冠层高度和 AGBD,其预测结果与观测值的偏差在 1.1%到 10.3%之间,其中森林高度的预测精度高于 AGBD,且对较老的 TSF 的预测精度高于较年轻的 TSF。这一结果表明,在景观尺度上,时空替代假设是稳健的。然而,由于热带次生林的激光雷达测量数据很少,我们使用 1998 年的激光雷达数据集来检验基于样地的研究在多大程度上可以量化景观中次生林平均高度和生物量。我们发现,要使对高度或 AGBD 的估计接近景观平均值,所需的样本面积比次生林年代序列研究中典型的样地面积要大。例如,要在 10%的景观范围内估计 AGBD,每个年龄类别的样地需要超过三十个 0.1 公顷的样地,并且需要更大的总面积。我们的结论是,地面研究中的抽样不足可能会给 TSF 碳汇的估算带来误差,而通过更广泛地使用激光雷达测量,可以减少这种误差。