Leitold Veronika, Keller Michael, Morton Douglas C, Cook Bruce D, Shimabukuro Yosio E
Remote Sensing Division, National Institute for Space Research (INPE), São José dos Campos, SP CEP 12201-970 Brazil ; Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA.
International Institute of Tropical Forestry, USDA Forest Service, San Juan, 00926 Puerto Rico ; EMBRAPA Satellite Monitoring, Campinas, SP CEP 13070-115 Brazil.
Carbon Balance Manag. 2015 Feb 3;10(1):3. doi: 10.1186/s13021-015-0013-x. eCollection 2015 Dec.
Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas with complex topography present a challenge for lidar remote sensing.
We compared digital terrain models (DTM) derived from airborne lidar data from a mountainous region of the Atlantic Forest in Brazil to 35 ground control points measured with survey grade GNSS receivers. The terrain model generated from full-density (~20 returns m) data was highly accurate (mean signed error of 0.19 ± 0.97 m), while those derived from reduced-density datasets (8 m, 4 m, 2 m and 1 m) were increasingly less accurate. Canopy heights calculated from reduced-density lidar data declined as data density decreased due to the inability to accurately model the terrain surface. For lidar return densities below 4 m, the bias in height estimates translated into errors of 80-125 Mg ha in predicted aboveground biomass.
Given the growing emphasis on the use of airborne lidar for forest management, carbon monitoring, and conservation efforts, the results of this study highlight the importance of careful survey planning and consistent sampling for accurate quantification of aboveground biomass stocks and dynamics. Approaches that rely primarily on canopy height to estimate aboveground biomass are sensitive to DTM errors from variability in lidar sampling density.
热带森林中的碳储量和通量仍是全球碳预算中不确定性的重要来源。机载激光雷达遥感是估算地上生物量的有力工具,前提是激光雷达测量能够穿透茂密的森林植被,以生成准确的地表地形和树冠高度估计值。地形复杂的热带森林地区对激光雷达遥感来说是一项挑战。
我们将巴西大西洋森林山区机载激光雷达数据生成的数字地形模型(DTM)与用测量级GNSS接收机测量的35个地面控制点进行了比较。由全密度(约20个回波/平方米)数据生成的地形模型非常准确(平均符号误差为0.19±0.97米),而从低密度数据集(8米、4米、2米和1米)生成的模型准确性越来越低。由于无法准确模拟地形表面,随着数据密度降低,由低密度激光雷达数据计算出的树冠高度也随之下降。对于激光雷达回波密度低于4米的情况,高度估计偏差导致预测地上生物量出现80-125吨/公顷的误差。
鉴于机载激光雷达在森林管理、碳监测和保护工作中的应用日益受到重视,本研究结果凸显了精心的调查规划和一致的采样对于准确量化地上生物量储量和动态的重要性。主要依靠树冠高度来估算地上生物量的方法对激光雷达采样密度变化引起的DTM误差很敏感。