1 Biost. and Data Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany.
2 Institute of Statistics, Ulm University, Ulm, Germany.
Stat Methods Med Res. 2019 Apr;28(4):1272-1289. doi: 10.1177/0962280217747310. Epub 2017 Dec 28.
After exploratory drug development, companies face the decision whether to initiate confirmatory trials based on limited efficacy information. This proof-of-concept decision is typically performed after a Phase II trial studying a novel treatment versus either placebo or an active comparator. The article aims to optimize the design of such a proof-of-concept trial with respect to decision making. We incorporate historical information and develop pre-specified decision criteria accounting for the uncertainty of the observed treatment effect. We optimize these criteria based on sensitivity and specificity, given the historical information. Specifically, time-to-event data are considered in a randomized 2-arm trial with additional prior information on the control treatment. The proof-of-concept criterion uses treatment effect size, rather than significance. Criteria are defined on the posterior distribution of the hazard ratio given the Phase II data and the historical control information. Event times are exponentially modeled within groups, allowing for group-specific conjugate prior-to-posterior calculation. While a non-informative prior is placed on the investigational treatment, the control prior is constructed via the meta-analytic-predictive approach. The design parameters including sample size and allocation ratio are then optimized, maximizing the probability of taking the right decision. The approach is illustrated with an example in lung cancer.
在探索性药物开发之后,公司面临着是否根据有限的疗效信息启动确证性试验的决策。这种概念验证决策通常是在一项研究新型治疗方法与安慰剂或阳性对照相比的 II 期试验之后进行的。本文旨在针对决策优化此类概念验证试验的设计。我们结合了历史信息,并制定了预先规定的决策标准,考虑到观察到的治疗效果的不确定性。我们根据历史信息,基于敏感性和特异性对这些标准进行了优化。具体来说,在具有关于对照治疗的附加先前信息的随机 2 臂试验中考虑了时间事件数据。概念验证标准使用治疗效果大小,而不是显著性。在给定 II 期数据和历史对照信息的情况下,在风险比的后验分布上定义了标准。在组内对事件时间进行指数建模,允许进行特定于组的共轭先验后验计算。虽然对研究性治疗使用非信息性先验,但通过荟萃分析预测方法构建对照先验。然后优化设计参数,包括样本量和分配比,以最大化正确决策的概率。通过肺癌的示例说明了该方法。