Suppr超能文献

用于三期临床试验中治疗效果早期检测的贝叶斯生存分析。

Bayesian survival analysis for early detection of treatment effects in phase 3 clinical trials.

作者信息

Biard Lucie, Bergeron Anne, Lévy Vincent, Chevret Sylvie

机构信息

INSERM U1153, Team ECSTRRA, Hôpital Saint Louis, 1 avenue Claude Vellefaux, 75010 Paris, France.

Université de Paris, Paris, France.

出版信息

Contemp Clin Trials Commun. 2021 Jan 9;21:100709. doi: 10.1016/j.conctc.2021.100709. eCollection 2021 Mar.

Abstract

Despite appealing characteristics for the clinical trials setting, Bayesian inference methods remain scarcely used, especially in randomized controlled clinical trials (RCT). This is particularly true when dealing with a survival endpoint, likely due to the additional complexities to model specifications. We propose to use Bayesian inference to estimate the treatment effect in this setting, using a proportional hazards (PH) model for right-censored data. Implementation of such an estimation process is illustrated on two working examples from cancer RCTs, the ALLOZITHRO and the CLL7-SA trials, both originally analyzed using a frequentist approach. In these two different settings, we show that Bayesian sequential analyses can provide early insight on treatment effect in RCTs. Relying on posterior distributions and predictive posterior probabilities, we find that Bayesian sequential analyses of the ALLOZITHRO trial, which was terminated early due to an unanticipated deleterious effect of the intervention on survival, allow quantifying early that the treatment effect was opposite to what was expected. Then, incorporating historical data in the sequential analyses of the CLL7-SA trial would have allowed the treatment effect to be closer to the protocol hypothesis. These results give grounds to advocate for a wider use of Bayesian approaches in RCTs, including those with right-censored endpoints, as informative decision tools.

摘要

尽管贝叶斯推理方法在临床试验环境中具有吸引人的特性,但仍很少被使用,尤其是在随机对照临床试验(RCT)中。在处理生存终点时更是如此,这可能是由于模型规范的额外复杂性所致。我们建议在这种情况下使用贝叶斯推理来估计治疗效果,对右删失数据使用比例风险(PH)模型。通过癌症RCT的两个实例——ALLOZITHRO试验和CLL7-SA试验(最初均采用频率论方法进行分析)说明了这种估计过程的实施情况。在这两种不同的情况下,我们表明贝叶斯序贯分析可以为RCT中的治疗效果提供早期见解。依靠后验分布和预测后验概率,我们发现,由于干预对生存产生意外有害影响而提前终止的ALLOZITHRO试验的贝叶斯序贯分析能够早期量化出治疗效果与预期相反。然后,在CLL7-SA试验的序贯分析中纳入历史数据本可以使治疗效果更接近方案假设。这些结果为在RCT中更广泛地使用贝叶斯方法(包括那些具有右删失终点的试验)作为信息丰富的决策工具提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f213/7817368/e2e549ccbec5/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验