Suppr超能文献

汇聚的光、能量和激素信号控制分生组织的活动、叶片的起始和生长。

Converging Light, Energy and Hormonal Signaling Control Meristem Activity, Leaf Initiation, and Growth.

机构信息

School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom.

Centre for Agricultural Research of the Hungarian Academy of Sciences, H-2462 Martonvasar, Brunszvik u. 2, Hungary.

出版信息

Plant Physiol. 2018 Feb;176(2):1365-1381. doi: 10.1104/pp.17.01730. Epub 2017 Dec 28.

Abstract

The development of leaf primordia is subject to light control of meristematic activity. Light regulates the expression of thousands of genes with roles in cell proliferation, organ development, and differentiation of photosynthetic cells. Previous work has highlighted roles for hormone homeostasis and the energy-dependent Target of Rapamycin (TOR) kinase in meristematic activity, yet a picture of how these two regulatory mechanisms depend on light perception and interact with each other has yet to emerge. Their relevance beyond leaf initiation also is unclear. Here, we report the discovery that the dark-arrested meristematic region of Arabidopsis () experiences a local energy deprivation state and confirm previous findings that the PIN1 auxin transporter is diffusely localized in the dark. Light triggers a rapid removal of the starvation state and the establishment of PIN1 polar membrane localization consistent with auxin export, both preceding the induction of cell cycle- and cytoplasmic growth-associated genes. We demonstrate that shoot meristematic activity can occur in the dark through the manipulation of auxin and cytokinin activity as well as through the activation of energy signaling, both targets of photomorphogenesis action, but the organ developmental outcomes differ: while TOR-dependent energy signals alone stimulate cell proliferation, the development of a normal leaf lamina requires photomorphogenesis-like hormonal responses. We further show that energy signaling adjusts the extent of cell cycle activity and growth of young leaves non-cellautonomously to available photosynthates and leads to organs constituted of a greater number of cells developing under higher irradiance. This makes energy signaling perhaps the most important biomass growth determinant under natural, unstressed conditions.

摘要

叶片原基的发育受分生组织活性的光调控。光调控着数千个基因的表达,这些基因在细胞增殖、器官发育和光合细胞分化中发挥作用。先前的工作强调了激素稳态和依赖能量的雷帕霉素靶蛋白(TOR)激酶在分生组织活性中的作用,但这两种调节机制如何依赖光感知以及它们之间如何相互作用的情况尚不清楚。它们在叶片起始之外的相关性也不清楚。在这里,我们报告了一个发现,即拟南芥(Arabidopsis)的暗休止分生组织区域经历了局部能量剥夺状态,并证实了先前的发现,即 PIN1 生长素转运蛋白在黑暗中弥散定位。光触发了饥饿状态的迅速消除和 PIN1 极性膜定位的建立,这与生长素的输出一致,都发生在细胞周期和细胞质生长相关基因的诱导之前。我们证明,通过生长素和细胞分裂素活性的操纵以及通过光形态发生作用的目标能量信号的激活,暗处理下可以发生茎分生组织活性,但器官发育结果不同:虽然 TOR 依赖性能量信号单独刺激细胞增殖,但正常叶片薄片的发育需要类似光形态发生的激素反应。我们进一步表明,能量信号非细胞自主地调节幼叶细胞周期活性和生长的程度,以适应可用的光合产物,并导致在更高光照下发育的器官由更多数量的细胞构成。这使得能量信号成为自然条件下未受胁迫的情况下最重要的生物量生长决定因素。

相似文献

3
Differential TOR activation and cell proliferation in root and shoot apexes.根和茎尖中TOR的差异激活与细胞增殖
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2765-2770. doi: 10.1073/pnas.1618782114. Epub 2017 Feb 21.

引用本文的文献

7
Contributions of TOR Signaling on Photosynthesis.TOR 信号对光合作用的贡献。
Int J Mol Sci. 2021 Aug 20;22(16):8959. doi: 10.3390/ijms22168959.
8
Dynamic Nutrient Signaling Networks in Plants.植物中的动态养分信号网络。
Annu Rev Cell Dev Biol. 2021 Oct 6;37:341-367. doi: 10.1146/annurev-cellbio-010521-015047. Epub 2021 Aug 5.

本文引用的文献

2
Coordination of auxin-triggered leaf initiation by tomato .番茄生长素引发的叶片起始的协调作用
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):3246-3251. doi: 10.1073/pnas.1617146114. Epub 2017 Mar 7.
4
Differential TOR activation and cell proliferation in root and shoot apexes.根和茎尖中TOR的差异激活与细胞增殖
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2765-2770. doi: 10.1073/pnas.1618782114. Epub 2017 Feb 21.
9
Chloroplasts Are Central Players in Sugar-Induced Leaf Growth.叶绿体是糖分诱导叶片生长的核心参与者。
Plant Physiol. 2016 May;171(1):590-605. doi: 10.1104/pp.15.01669. Epub 2016 Mar 1.
10
TOR Signaling and Nutrient Sensing.TOR 信号与营养感应。
Annu Rev Plant Biol. 2016 Apr 29;67:261-85. doi: 10.1146/annurev-arplant-043014-114648. Epub 2016 Feb 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验