Van Dingenen Judith, De Milde Liesbeth, Vermeersch Mattias, Maleux Katrien, De Rycke Riet, De Bruyne Michiel, Storme Véronique, Gonzalez Nathalie, Dhondt Stijn, Inzé Dirk
Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.V.D., L.D.M., M.V., K.M., R.D.R., M.D.B., V.S., N.G., S.D., D.I.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.V.D., L.D.M., M.V., K.M., R.D.R., M.D.B., V.S., N.G., S.D., D.I.).
Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium (J.V.D., L.D.M., M.V., K.M., R.D.R., M.D.B., V.S., N.G., S.D., D.I.); andDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (J.V.D., L.D.M., M.V., K.M., R.D.R., M.D.B., V.S., N.G., S.D., D.I.)
Plant Physiol. 2016 May;171(1):590-605. doi: 10.1104/pp.15.01669. Epub 2016 Mar 1.
Leaves are the plant's powerhouses, providing energy for all organs through sugar production during photosynthesis. However, sugars serve not only as a metabolic energy source for sink tissues but also as signaling molecules, affecting gene expression through conserved signaling pathways to regulate plant growth and development. Here, we describe an in vitro experimental assay, allowing one to alter the sucrose (Suc) availability during early Arabidopsis (Arabidopsis thaliana) leaf development, with the aim to identify the affected cellular and molecular processes. The transfer of seedlings to Suc-containing medium showed a profound effect on leaf growth by stimulating cell proliferation and postponing the transition to cell expansion. Furthermore, rapidly after transfer to Suc, mesophyll cells contained fewer and smaller plastids, which are irregular in shape and contain fewer starch granules compared with control mesophyll cells. Short-term transcriptional responses after transfer to Suc revealed the repression of well-known sugar-responsive genes and multiple genes encoded by the plastid, on the one hand, and up-regulation of a GLUCOSE-6-PHOSPHATE TRANSPORTER (GPT2), on the other hand. Mutant gpt2 seedlings showed no stimulation of cell proliferation and no repression of chloroplast-encoded transcripts when transferred to Suc, suggesting that GPT2 plays a critical role in the Suc-mediated effects on early leaf growth. Our findings, therefore, suggest that induction of GPT2 expression by Suc increases the import of glucose-6-phosphate into the plastids that would repress chloroplast-encoded transcripts, restricting chloroplast differentiation. Retrograde signaling from the plastids would then delay the transition to cell expansion and stimulate cell proliferation.
叶片是植物的能量工厂,通过光合作用产生糖分,为所有器官提供能量。然而,糖不仅作为库组织的代谢能量来源,还作为信号分子,通过保守的信号通路影响基因表达,从而调节植物的生长和发育。在此,我们描述了一种体外实验方法,可在拟南芥叶片早期发育过程中改变蔗糖(Suc)的可利用性,旨在确定受影响的细胞和分子过程。将幼苗转移到含蔗糖的培养基上,通过刺激细胞增殖和推迟向细胞扩张的转变,对叶片生长产生了深远影响。此外,转移到蔗糖后不久,叶肉细胞中的质体数量减少且体积变小,与对照叶肉细胞相比,其形状不规则且淀粉粒较少。转移到蔗糖后的短期转录反应显示,一方面,一些著名的糖响应基因和质体编码的多个基因受到抑制,另一方面,一个葡萄糖-6-磷酸转运体(GPT2)被上调。突变体gpt2幼苗转移到蔗糖后,细胞增殖未受刺激,叶绿体编码转录本也未受到抑制,这表明GPT2在蔗糖介导的对叶片早期生长的影响中起关键作用。因此,我们的研究结果表明,蔗糖诱导GPT2表达会增加葡萄糖-6-磷酸向质体的导入,这会抑制叶绿体编码的转录本,限制叶绿体分化。然后,来自质体的逆向信号会延迟向细胞扩张的转变并刺激细胞增殖。