Suppr超能文献

肋软骨的特性及其作为关节软骨组织工程细胞来源的适用性。

Characterization of costal cartilage and its suitability as a cell source for articular cartilage tissue engineering.

机构信息

Align Technology, San Jose, CA, USA.

Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.

出版信息

J Tissue Eng Regen Med. 2018 May;12(5):1163-1176. doi: 10.1002/term.2630. Epub 2018 Jan 21.

Abstract

Costal cartilage is a promising donor source of chondrocytes to alleviate cell scarcity in articular cartilage tissue engineering. Limited knowledge exists, however, on costal cartilage characteristics. This study describes the characterization of costal cartilage and articular cartilage properties and compares neocartilage engineered with costal chondrocytes to native articular cartilage, all within a sheep model. Specifically, we (a) quantitatively characterized the properties of costal cartilage in comparison to patellofemoral articular cartilage, and (b) evaluated the quality of neocartilage derived from costal chondrocytes for potential use in articular cartilage regeneration. Ovine costal and articular cartilages from various topographical locations were characterized mechanically, biochemically, and histologically. Costal cartilage was stiffer in compression but softer and weaker in tension than articular cartilage. These differences were attributed to high amounts of glycosaminoglycans and mineralization and a low amount of collagen in costal cartilage. Compared to articular cartilage, costal cartilage was more densely populated with chondrocytes, rendering it an excellent chondrocyte source. In terms of tissue engineering, using the self-assembling process, costal chondrocytes formed articular cartilage-like neocartilage. Quantitatively compared via a functionality index, neocartilage achieved 55% of the medial condyle cartilage mechanical and biochemical properties. This characterization study highlighted the differences between costal and articular cartilages in native forms and demonstrated that costal cartilage is a valuable source of chondrocytes suitable for articular cartilage regeneration strategies.

摘要

肋软骨是缓解关节软骨组织工程中细胞短缺的一种很有前途的软骨细胞供体来源。然而,人们对肋软骨的特性知之甚少。本研究描述了肋软骨和关节软骨特性的特征,并在绵羊模型中比较了用肋软骨细胞构建的新软骨与天然关节软骨的特性。具体来说,我们(a)定量比较了肋软骨与髌股关节软骨的特性,(b)评估了从肋软骨细胞获得的新软骨的质量,以期用于关节软骨再生。我们对来自不同解剖位置的绵羊肋软骨和关节软骨进行了机械、生化和组织学特征分析。与关节软骨相比,肋软骨在压缩时更硬,但在拉伸时更软且更弱。这些差异归因于肋软骨中糖胺聚糖和矿化程度较高,以及胶原蛋白含量较低。与关节软骨相比,肋软骨中的软骨细胞密度更高,是一种很好的软骨细胞来源。就组织工程而言,利用自组装过程,肋软骨细胞形成了类似于关节软骨的新软骨。通过功能指数进行定量比较,新软骨达到了内侧髁软骨 55%的机械和生化特性。这项特征研究强调了天然状态下肋软骨和关节软骨之间的差异,并表明肋软骨是一种有价值的软骨细胞来源,适合用于关节软骨再生策略。

相似文献

1
Characterization of costal cartilage and its suitability as a cell source for articular cartilage tissue engineering.
J Tissue Eng Regen Med. 2018 May;12(5):1163-1176. doi: 10.1002/term.2630. Epub 2018 Jan 21.
2
Using Costal Chondrocytes to Engineer Articular Cartilage with Applications of Passive Axial Compression and Bioactive Stimuli.
Tissue Eng Part A. 2018 Mar;24(5-6):516-526. doi: 10.1089/ten.TEA.2017.0136. Epub 2017 Aug 14.
3
Structure-function relationships of fetal ovine articular cartilage.
Acta Biomater. 2019 Mar 15;87:235-244. doi: 10.1016/j.actbio.2019.01.073. Epub 2019 Feb 1.
4
Properties of cartilage engineered from elderly human chondrocytes for articular surface repair.
Tissue Eng Part A. 2012 Jul;18(13-14):1490-9. doi: 10.1089/ten.TEA.2011.0445. Epub 2012 Jun 5.
5
Integrative repair of cartilage with articular and nonarticular chondrocytes.
Tissue Eng. 2004 Sep-Oct;10(9-10):1308-15. doi: 10.1089/ten.2004.10.1308.
7
Effects of passage number and post-expansion aggregate culture on tissue engineered, self-assembled neocartilage.
Acta Biomater. 2016 Oct 1;43:150-159. doi: 10.1016/j.actbio.2016.07.044. Epub 2016 Jul 28.
8
The Effect of Neonatal, Juvenile, and Adult Donors on Rejuvenated Neocartilage Functional Properties.
Tissue Eng Part A. 2022 May;28(9-10):383-393. doi: 10.1089/ten.TEA.2021.0167. Epub 2022 Jan 21.
10
Articular cartilage generation applying PEG-LA-DM/PEGDM copolymer hydrogels.
BMC Musculoskelet Disord. 2016 Jun 3;17:245. doi: 10.1186/s12891-016-1100-1.

引用本文的文献

2
Repair of the femoral head osteochondral defect in a swine model using autologous costal cartilage graft transplantation.
J Orthop Translat. 2025 Feb 10;50:413-422. doi: 10.1016/j.jot.2024.10.007. eCollection 2025 Jan.
3
Superstable lipid vacuoles endow cartilage with its shape and biomechanics.
Science. 2025 Jan 10;387(6730):eads9960. doi: 10.1126/science.ads9960.
4
Biomechanical, biochemical, and histological characterization of sacroiliac joint cartilage in the Yucatan minipig.
J Mech Behav Biomed Mater. 2024 Sep;157:106658. doi: 10.1016/j.jmbbm.2024.106658. Epub 2024 Jul 14.
7
Comparative Analysis of Hyaline Cartilage Characteristics and Chondrocyte Potential for Articular Cartilage Repair.
Ann Biomed Eng. 2024 Apr;52(4):920-933. doi: 10.1007/s10439-023-03429-1. Epub 2024 Jan 8.
8
Costal Cartilage Graft Repair Osteochondral Defect in a Mouse Model.
Cartilage. 2025 Jun;16(2):212-223. doi: 10.1177/19476035231209404. Epub 2023 Oct 26.
10
Topographical Characterization of the Young, Healthy Human Femoral Medial Condyle.
Cartilage. 2023 Sep;14(3):338-350. doi: 10.1177/19476035221141421. Epub 2022 Dec 19.

本文引用的文献

1
Adipose, Bone Marrow and Synovial Joint-Derived Mesenchymal Stem Cells for Cartilage Repair.
Front Genet. 2016 Dec 20;7:213. doi: 10.3389/fgene.2016.00213. eCollection 2016.
2
Cell-based tissue engineering strategies used in the clinical repair of articular cartilage.
Biomaterials. 2016 Aug;98:1-22. doi: 10.1016/j.biomaterials.2016.04.018. Epub 2016 Apr 26.
3
The distribution of superficial zone protein (SZP)/lubricin/PRG4 and boundary mode frictional properties of the bovine diarthrodial joint.
J Biomech. 2015 Sep 18;48(12):3406-12. doi: 10.1016/j.jbiomech.2015.05.032. Epub 2015 Jun 12.
5
Neocartilage integration in temporomandibular joint discs: physical and enzymatic methods.
J R Soc Interface. 2015 Feb 6;12(103). doi: 10.1098/rsif.2014.1075.
6
Repair and tissue engineering techniques for articular cartilage.
Nat Rev Rheumatol. 2015 Jan;11(1):21-34. doi: 10.1038/nrrheum.2014.157. Epub 2014 Sep 23.
7
Adhesion and integration of tissue engineered cartilage to porous polyethylene for composite ear reconstruction.
J Biomed Mater Res B Appl Biomater. 2015 Jul;103(5):983-91. doi: 10.1002/jbm.b.33269. Epub 2014 Sep 6.
9
Long-term follow-up of tracheoplasty using autologous pericardial patch and strips of costal cartilage.
Eur J Cardiothorac Surg. 2015 Jan;47(1):146-52; discussion 152. doi: 10.1093/ejcts/ezu101. Epub 2014 Mar 18.
10
Effects of hesperidin loaded poly(lactic-co-glycolic acid) scaffolds on growth behavior of costal cartilage cells in vitro and in vivo.
J Biomater Sci Polym Ed. 2014;25(6):625-40. doi: 10.1080/09205063.2014.888304. Epub 2014 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验