Takahashi Keisuke
Center for Materials research by Information Integration (CMI2), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.
Chemphyschem. 2018 Jul 5;19(13):1593-1598. doi: 10.1002/cphc.201800141. Epub 2018 May 3.
Prediction of the magnetic moment of binary body centered cubic (BCC) is explored in terms of first principle calculations and data science. A dataset of 1,541 binary BCC materials constructed by first principle calculations is implemented for data mining. Descriptors for determining the magnetic moment are explored using machine learning, where classification and regression models are both implemented. Data mining reveals that two descriptors are responsible for classifying whether the materials have zero or nonzero magnetic moments and can also classify which groups of magnetic moments they belong to (μ <1, 1≤μ <2, or 2≤μ <3) where the average scores produced in cross validation indicate 80 % and 91 % accuracy, respectively. Furthermore, the direct prediction of magnetic moments is performed using a regression model where eight descriptors are revealed with an average score of 74 % accuracy. The inverse problem - from a given magnetic moment to corresponding material - is successfully addressed where the stability of the predicted materials are confirmed by further first principle calculations. Thus, descriptors for the magnetic moment in BCC materials are revealed and can be seen as the base descriptor set for the magnetic moments of further complex materials.
本文从第一性原理计算和数据科学的角度,对体心立方(BCC)二元体系的磁矩预测进行了探索。通过第一性原理计算构建了一个包含1541种BCC二元材料的数据集,并用于数据挖掘。利用机器学习探索了用于确定磁矩的描述符,同时实现了分类和回归模型。数据挖掘表明,两个描述符负责对材料的磁矩是否为零进行分类,还能对它们所属的磁矩组(μ<1、1≤μ<2或2≤μ<3)进行分类,交叉验证中产生的平均得分分别表明准确率为80%和91%。此外,使用回归模型对磁矩进行直接预测,发现了八个描述符,平均准确率为74%。成功解决了从给定磁矩到相应材料的逆问题,通过进一步的第一性原理计算证实了预测材料的稳定性。因此,揭示了BCC材料中磁矩的描述符,可将其视为进一步复杂材料磁矩的基本描述符集。