Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA.
Instituto de Catalisis y Petroleoquimica, CSIC, C/ Marie Curie 2, L10, 28049, Madrid, Spain.
Angew Chem Int Ed Engl. 2018 Feb 23;57(9):2404-2408. doi: 10.1002/anie.201712890. Epub 2018 Jan 16.
An enzymatic electrosynthesis system was created by combining an aldehyde deformylating oxygenase (ADO) from cyanobacteria that catalyzes the decarbonylation of fatty aldehydes to alkanes and formic acid with an electrochemical interface. This system is able to produce a range of alkanes (octane to propane) from aldehydes and alcohols. The combination of this bioelectrochemical system with a hydrogenase bioanode yields a H /heptanal enzymatic fuel cell (EFC) able to simultaneously generate electrical energy with a maximum current density of 25 μA cm at 0.6 V and produce hexane with a faradaic efficiency of 24 %.
通过将一种蓝藻来源的醛脱羰酶(ADO)与电化学界面相结合,创建了一种酶促电合成系统,该酶能够催化脂肪酸醛脱羰生成烷烃和甲酸。该系统能够将醛和醇转化为一系列烷烃(从辛烷到丙烷)。将这种生物电化学系统与氢化酶生物阳极相结合,得到了一种 H/正庚醛酶燃料电池(EFC),该电池能够在 0.6 V 时以最大电流密度 25 μA/cm 2 同时产生电能,并以 24%的法拉第效率生成正己烷。