Suppr超能文献

纳米尺度的膜在化学上隔离并在非生物/生物界面上进行电子布线。

Nanoscale membranes that chemically isolate and electronically wire up the abiotic/biotic interface.

机构信息

Molecular Foundry Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, 94720, USA.

Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, 94720, USA.

出版信息

Nat Commun. 2018 Jun 11;9(1):2263. doi: 10.1038/s41467-018-04707-6.

Abstract

By electrochemically coupling microbial and abiotic catalysts, bioelectrochemical systems such as microbial electrolysis cells and microbial electrosynthesis systems synthesize energy-rich chemicals from energy-poor precursors with unmatched efficiency. However, to circumvent chemical incompatibilities between the microbial cells and inorganic materials that result in toxicity, corrosion, fouling, and efficiency-degrading cross-reactions between oxidation and reduction environments, bioelectrochemical systems physically separate the microbial and inorganic catalysts by macroscopic distances, thus introducing ohmic losses, rendering these systems impractical at scale. Here we electrochemically couple an inorganic catalyst, a SnO anode, with a microbial catalyst, Shewanella oneidensis, via a 2-nm-thick silica membrane containing -CN and -NO functionalized p-oligo(phenylene vinylene) molecular wires. This membrane enables electron flow at 0.51 μA cm from microbial catalysts to the inorganic anode, while blocking small molecule transport. Thus the modular architecture avoids chemical incompatibilities without ohmic losses and introduces an immense design space for scale up of bioelectrochemical systems.

摘要

通过电化学耦合微生物和非生物催化剂,生物电化学系统(如微生物电解池和微生物电合成系统)能够以无与伦比的效率从能量贫乏的前体物中合成能量丰富的化学物质。然而,为了避免微生物细胞与无机材料之间的化学不相容性,这些不相容性会导致毒性、腐蚀、结垢和氧化还原环境之间效率降低的交叉反应,生物电化学系统通过宏观距离将微生物和无机催化剂物理分离,从而引入欧姆损耗,使这些系统在规模上变得不切实际。在这里,我们通过含有-CN 和 -NO 官能化的 p-聚(对亚苯基乙烯)分子线的 2nm 厚的二氧化硅膜将无机催化剂 SnO 阳极与微生物催化剂 Shewanella oneidensis 电化学偶联。该膜能够在 0.51μA cm 的电流密度下实现电子从微生物催化剂流向无机阳极,同时阻止小分子的传输。因此,这种模块化架构避免了欧姆损耗的化学不相容性,并为生物电化学系统的大规模扩展引入了巨大的设计空间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验