Suppr超能文献

基于原位形成的聚苯胺纳米粒子和聚乳酸的导电纳米纤维复合支架用于骨再生。

Conductive nanofibrous composite scaffolds based on in-situ formed polyaniline nanoparticle and polylactide for bone regeneration.

机构信息

Xi'an Modern Chemistry Research Institute, Xi'an 710065, China; Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.

Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.

出版信息

J Colloid Interface Sci. 2018 Mar 15;514:517-527. doi: 10.1016/j.jcis.2017.12.062. Epub 2017 Dec 24.

Abstract

Conducting polymers and biodegradable polylactide (PLA) scaffolds are both promising biomaterials applied in bone tissue engineering. It is necessary to develop a composite scaffold combining their properties of osteogenic differentiation promotion and three-dimension matrix. To conquer the problem of poor processability of conductive polymers, we use a novel in-situ polymerization/thermal induced phase separation (TIPS) method to fabricate conductive nanofibrous PLA scaffolds with well-distributed polyaniline (PANI) nano-structures. The simple preparation technique provides the possibility to scale-up production of these conductive nanofibrous composite scaffolds. The scaffold structure and content of in-situ formed polyaniline nanoparticles was thoroughly characterized with H NMR, FT-IR, XPS, TGA, SEM and UV-vis, and the conductivity/electrochemical properties of the composite scaffolds were controlled with varied feed ratios of aniline to PLA. Meanwhile, the good cytocompatibility of these composite scaffolds was evaluated by culturing bone marrow derived mesenchymal stem cells (BMSCs) on them. The effect of conductive nanofibrous scaffolds on osteogenic differentiation was studied with expression levels of alkaline phosphatase (Alp), osteocalcin (Ocn) and runt-related transcription factor 2 (Runx2) during the culture of BMSCs for three weeks. The calcium mineralization of BMSCs is determined by alizarin red staining. These results indicated that a moderate content of PANI in the conductive nanofibrous scaffolds significantly promoted osteogenic differentiation of BMSCs for engineering bone tissues.

摘要

导电聚合物和可生物降解的聚乳酸(PLA)支架都是应用于骨组织工程的有前途的生物材料。有必要开发一种结合两者促进成骨分化和三维基质性能的复合支架。为了解决导电聚合物加工性能差的问题,我们采用了一种新颖的原位聚合/热诱导相分离(TIPS)方法,制备了具有均匀分布聚苯胺(PANI)纳米结构的导电纳米纤维 PLA 支架。这种简单的制备技术为这些导电纳米纤维复合支架的大规模生产提供了可能性。通过 1 H NMR、FT-IR、XPS、TGA、SEM 和 UV-vis 对原位形成的聚苯胺纳米粒子的支架结构和含量进行了彻底的表征,并通过改变苯胺与 PLA 的进料比来控制复合支架的导电性/电化学性能。同时,通过在这些复合支架上培养骨髓间充质干细胞(BMSCs)来评估它们的良好细胞相容性。通过碱性磷酸酶(Alp)、骨钙素(Ocn)和 runt 相关转录因子 2(Runx2)在 BMSCs 培养三周期间的表达水平来研究导电纳米纤维支架对成骨分化的影响。通过茜素红染色来确定 BMSCs 的钙矿化。这些结果表明,导电纳米纤维支架中适量的 PANI 显著促进了用于工程骨组织的 BMSCs 的成骨分化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验