Suppr超能文献

酵母端粒酶招募到端粒的结构见解。

Structural Insights into Yeast Telomerase Recruitment to Telomeres.

机构信息

State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201210 Shanghai, China.

Marseille Cancer Research Center (CRCM), U1068 INSERM, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes (Equipe labellisée Ligue), 13009 Marseille, France.

出版信息

Cell. 2018 Jan 11;172(1-2):331-343.e13. doi: 10.1016/j.cell.2017.12.008. Epub 2017 Dec 28.

Abstract

Telomerase maintains chromosome ends from humans to yeasts. Recruitment of yeast telomerase to telomeres occurs through its Ku and Est1 subunits via independent interactions with telomerase RNA (TLC1) and telomeric proteins Sir4 and Cdc13, respectively. However, the structures of the molecules comprising these telomerase-recruiting pathways remain unknown. Here, we report crystal structures of the Ku heterodimer and Est1 complexed with their key binding partners. Two major findings are as follows: (1) Ku specifically binds to telomerase RNA in a distinct, yet related, manner to how it binds DNA; and (2) Est1 employs two separate pockets to bind distinct motifs of Cdc13. The N-terminal Cdc13-binding site of Est1 cooperates with the TLC1-Ku-Sir4 pathway for telomerase recruitment, whereas the C-terminal interface is dispensable for binding Est1 in vitro yet is nevertheless essential for telomere maintenance in vivo. Overall, our results integrate previous models and provide fundamentally valuable structural information regarding telomere biology.

摘要

端粒酶维持从人类到酵母的染色体末端。酵母端粒酶通过其 Ku 和 Est1 亚基与端粒酶 RNA(TLC1)和端粒蛋白 Sir4 和 Cdc13 分别通过独立的相互作用招募到端粒。然而,组成这些端粒酶招募途径的分子结构仍然未知。在这里,我们报告了 Ku 异源二聚体和 Est1 与其关键结合伙伴复合物的晶体结构。有两个主要发现:(1)Ku 特异性地以一种与结合 DNA 不同的独特方式结合端粒酶 RNA;(2)Est1 采用两种不同的口袋来结合 Cdc13 的不同基序。Est1 的 N 端 Cdc13 结合位点与 TLC1-Ku-Sir4 途径共同用于端粒酶的招募,而 C 端界面在体外结合 Est1 时是可有可无的,但对于体内端粒维持却是必不可少的。总的来说,我们的结果整合了以前的模型,并为端粒生物学提供了具有根本价值的结构信息。

相似文献

1
Structural Insights into Yeast Telomerase Recruitment to Telomeres.
Cell. 2018 Jan 11;172(1-2):331-343.e13. doi: 10.1016/j.cell.2017.12.008. Epub 2017 Dec 28.
2
The principal role of Ku in telomere length maintenance is promotion of Est1 association with telomeres.
Genetics. 2014 Aug;197(4):1123-36. doi: 10.1534/genetics.114.164707. Epub 2014 May 30.
3
Delivery of yeast telomerase to a DNA break depends on the recruitment functions of Cdc13 and Est1.
Mol Cell. 2004 Oct 8;16(1):139-46. doi: 10.1016/j.molcel.2004.09.009.
7
The mechanisms of K. lactis Cdc13 in telomere DNA-binding and telomerase regulation.
DNA Repair (Amst). 2018 Jan;61:37-45. doi: 10.1016/j.dnarep.2017.11.007. Epub 2017 Nov 28.
9
A second essential function of the Est1-binding arm of yeast telomerase RNA.
RNA. 2015 May;21(5):862-76. doi: 10.1261/rna.049379.114. Epub 2015 Mar 3.

引用本文的文献

1
How stem cells respond to infection, inflammation and ageing.
Nat Rev Immunol. 2025 Jul 24. doi: 10.1038/s41577-025-01203-z.
2
Restriction of Ku translocation protects telomere ends.
Nat Commun. 2025 Jul 24;16(1):6824. doi: 10.1038/s41467-025-61864-1.
3
The ubiquitin protease Ubp10 suppresses the formation of translocations at Cdc13 binding sites.
bioRxiv. 2025 Jun 28:2025.06.27.661970. doi: 10.1101/2025.06.27.661970.
4
Ku limits RNA-induced innate immunity to allow Alu expansion in primates.
Nature. 2025 Jul;643(8071):562-571. doi: 10.1038/s41586-025-09104-w. Epub 2025 May 15.
5
RNA anchoring of Upf1 facilitates recruitment of Dcp2 in the NMD decapping complex.
Nucleic Acids Res. 2025 Feb 27;53(5). doi: 10.1093/nar/gkaf160.
8
DNA-PK participates in pre-rRNA biogenesis independent of DNA double-strand break repair.
Nucleic Acids Res. 2024 Jun 24;52(11):6360-6375. doi: 10.1093/nar/gkae316.
9
Control of telomere length in yeast by SUMOylated PCNA and the Elg1 PCNA unloader.
Elife. 2023 Aug 2;12:RP86990. doi: 10.7554/eLife.86990.
10
CST-Polα/Primase: the second telomere maintenance machine.
Genes Dev. 2023 Jul 1;37(13-14):555-569. doi: 10.1101/gad.350479.123. Epub 2023 Jul 26.

本文引用的文献

1
Active Yeast Telomerase Shares Subunits with Ribonucleoproteins RNase P and RNase MRP.
Cell. 2016 May 19;165(5):1171-1181. doi: 10.1016/j.cell.2016.04.018. Epub 2016 May 5.
3
The Ku heterodimer: function in DNA repair and beyond.
Mutat Res Rev Mutat Res. 2015 Jan-Mar;763:15-29. doi: 10.1016/j.mrrev.2014.06.002. Epub 2014 Jul 4.
4
The principal role of Ku in telomere length maintenance is promotion of Est1 association with telomeres.
Genetics. 2014 Aug;197(4):1123-36. doi: 10.1534/genetics.114.164707. Epub 2014 May 30.
5
Rif1 and Rif2 shape telomere function and architecture through multivalent Rap1 interactions.
Cell. 2013 Jun 6;153(6):1340-53. doi: 10.1016/j.cell.2013.05.007.
6
RNA recognition by the DNA end-binding Ku heterodimer.
RNA. 2013 Jun;19(6):841-51. doi: 10.1261/rna.038703.113. Epub 2013 Apr 22.
7
Structure and function in the budding yeast nucleus.
Genetics. 2012 Sep;192(1):107-29. doi: 10.1534/genetics.112.140608.
8
Biogenesis of telomerase ribonucleoproteins.
RNA. 2012 Oct;18(10):1747-59. doi: 10.1261/rna.034629.112. Epub 2012 Aug 8.
9
Mutually exclusive binding of telomerase RNA and DNA by Ku alters telomerase recruitment model.
Cell. 2012 Mar 2;148(5):922-32. doi: 10.1016/j.cell.2012.01.033. Epub 2012 Feb 23.
10
RPA facilitates telomerase activity at chromosome ends in budding and fission yeasts.
EMBO J. 2012 Apr 18;31(8):2034-46. doi: 10.1038/emboj.2012.40. Epub 2012 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验