Theulot Bertrand, Tourancheau Alan, Simonin Chavignier Emma, Jean Etienne, Arbona Jean-Michel, Audit Benjamin, Hyrien Olivier, Lacroix Laurent, Le Tallec Benoît
IBENS, Département de biologie, École normale supérieure, Université PSL, CNRS, INSERM, 75005, Paris, France.
Sorbonne Université, Collège Doctoral, 75005, Paris, France.
Nat Commun. 2025 Jan 2;16(1):242. doi: 10.1038/s41467-024-55520-3.
Current temporal studies of DNA replication are either low-resolution or require complex cell synchronisation and/or sorting procedures. Here we introduce Nanotiming, a single-molecule, nanopore sequencing-based method producing high-resolution, telomere-to-telomere replication timing (RT) profiles of eukaryotic genomes by interrogating changes in intracellular dTTP concentration during S phase through competition with its analogue bromodeoxyuridine triphosphate (BrdUTP) for incorporation into replicating DNA. This solely demands the labelling of asynchronously growing cells with an innocuous dose of BrdU during one doubling time followed by BrdU quantification along nanopore reads. We demonstrate in S. cerevisiae model eukaryote that Nanotiming reproduces RT profiles generated by reference methods both in wild-type and mutant cells inactivated for known RT determinants. Nanotiming is simple, accurate, inexpensive, amenable to large-scale analyses, and has the unique ability to access RT of individual telomeres, revealing that Rif1 iconic telomere regulator selectively delays replication of telomeres associated with specific subtelomeric elements.
目前关于DNA复制的时间研究要么分辨率低,要么需要复杂的细胞同步化和/或分选程序。在此,我们介绍了纳米计时法(Nanotiming),这是一种基于单分子纳米孔测序的方法,通过在S期利用其类似物溴脱氧尿苷三磷酸(BrdUTP)与胞内dTTP竞争掺入复制DNA的过程中,检测胞内dTTP浓度的变化,从而生成真核生物基因组从端粒到端粒的高分辨率复制时间(RT)图谱。这仅需要在一个倍增时间内用无害剂量的BrdU标记异步生长的细胞,然后沿着纳米孔读数对BrdU进行定量。我们在酿酒酵母模型真核生物中证明,纳米计时法在野生型和因已知RT决定因素而失活的突变细胞中,都能重现参考方法生成的RT图谱。纳米计时法简单、准确、廉价,适合大规模分析,并且具有获取单个端粒RT的独特能力,揭示了Rif1标志性端粒调节因子选择性延迟与特定亚端粒元件相关的端粒复制。