Zhu Yimeng, Li Angelina, Maji Suvrajit, Lee Brian J, Korn Sophie M, Gertie Jake A, Dorrity Tyler J, Wang Jianhua, Wang Kyle J, Pelletier Amandine, Moakley Daniel F, Kelly Rachel D, Holmes Antony B, Rabadan Raul, Edgell David R, Schild-Poulter Caroline, Modesti Mauro, Steckelberg Anna-Lena, Hendrickson Eric A, Chung Hachung, Zhang Chaolin, Zha Shan
Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
Nature. 2025 Jul;643(8071):562-571. doi: 10.1038/s41586-025-09104-w. Epub 2025 May 15.
Ku70 and Ku80 form the Ku heterodimer, a ring-shaped complex that initiates the non-homologous end-joining (NHEJ) DNA repair pathway. Ku binds to double-stranded DNA ends and recruits other NHEJ factors, including LIG4 and DNA-PKcs. Although Ku can bind to double-stranded RNA (dsRNA) and trap mutated DNA-PKcs on ribosomal RNA, the physiological role of the Ku-RNA interaction in otherwise wild-type cells remains unclear. Notably, Ku is dispensable for mouse development but is essential in human cells. Despite their similar genome sizes, human cells express about 100-fold more Ku than mouse cells, suggesting that Ku has functions beyond NHEJ, possibly through a dose-sensitive interaction with dsRNA, which binds Ku 10 to 100 times more weakly than double-stranded DNA. Here, Ku depletion induces profound interferon and NF-κB signalling via the dsRNA sensor MDA5-RIG-I and MAVS. Prolonged Ku degradation further activates other dsRNA sensors, especially PKR (also known as EIF2AK2) (suppressing translation) and OAS-RNaseL (cleaving ribosomal RNA), leading to growth arrest and cell death. Knockout of MAVS, RIG-I or MDA5 suppressed interferon signalling and, similarly to PKR knockout, partially rescued Ku-depleted human cells. Ku crosslinking and immunoprecipitation analyses revealed binding of Ku to diverse dsRNA molecules, predominantly stem-loops in primate-specific antisense Alu elements in introns and 3' untranslated regions. Ku expression is higher in primates than in non-primate mammals and is tightly correlated with Alu expansion. Thus, Ku has a vital role in accommodating Alu expansion in primates, limiting dsRNA-induced innate immunity, which explains its high expression and essential function in human cells.
Ku70和Ku80形成Ku异源二聚体,这是一种环状复合物,可启动非同源末端连接(NHEJ)DNA修复途径。Ku与双链DNA末端结合,并募集其他NHEJ因子,包括LIG4和DNA-PKcs。尽管Ku可以与双链RNA(dsRNA)结合,并将突变的DNA-PKcs捕获在核糖体RNA上,但在其他方面为野生型的细胞中,Ku-RNA相互作用的生理作用仍不清楚。值得注意的是,Ku对小鼠发育并非必需,但对人类细胞却是必不可少的。尽管它们的基因组大小相似,但人类细胞中Ku的表达量比小鼠细胞高约100倍,这表明Ku具有NHEJ以外的功能,可能是通过与dsRNA的剂量敏感相互作用实现的,dsRNA与Ku的结合比双链DNA弱10至100倍。在这里,Ku的缺失通过dsRNA传感器MDA5-RIG-I和MAVS诱导强烈的干扰素和NF-κB信号传导。长期的Ku降解进一步激活其他dsRNA传感器,特别是PKR(也称为EIF2AK2)(抑制翻译)和OAS-RNaseL(切割核糖体RNA),导致生长停滞和细胞死亡。敲除MAVS、RIG-I或MDA5可抑制干扰素信号传导,并且与敲除PKR类似,部分挽救了Ku缺失的人类细胞。Ku交联和免疫沉淀分析揭示了Ku与多种dsRNA分子的结合,主要是内含子和3'非翻译区中灵长类特异性反义Alu元件中的茎环。Ku在灵长类动物中的表达高于非灵长类哺乳动物,并且与Alu扩增密切相关。因此,Ku在适应灵长类动物中的Alu扩增、限制dsRNA诱导的先天免疫方面起着至关重要的作用,这解释了其在人类细胞中的高表达和重要功能。
Mol Cell. 2025-7-17
Sci Rep. 2023-7-27
Proc Natl Acad Sci U S A. 2023-6-20
Bioinformatics. 2022-5-13
Nat Rev Mol Cell Biol. 2022-4
Innovation (Camb). 2021-7-1