Suppr超能文献

在来自小波兰省的队列中使用WINROP算法预测早产儿严重视网膜病变。一项回顾性单中心研究。

Prediction of severe retinopathy of prematurity using the WINROP algorithm in a cohort from Malopolska. A retrospective, single-center study.

作者信息

Jagła Mateusz, Peterko Anna, Olesińska Katarzyna, Szymońska Izabela, Kwinta Przemko

机构信息

Chair of Pediatrics, Jagiellonian University, Collegium Medicum, Cracow, Poland.

Student Research Group, Chair of Pediatrics, Jagiellonian University, Collegium Medicum, Cracow, Poland.

出版信息

Dev Period Med. 2017;21(4):336-343. doi: 10.34763/devperiodmed.20172104.336343.

Abstract

INTRODUCTION

Retinopathy of prematurity (ROP) is one of the leading avoidable causes of blindness in childhood in developed countries. Accurate diagnosis and treatment are essential for preventing the loss of vision. WINROP (https://www.winrop.com) is an online monitoring system which predicts the risk for ROP requiring treatment based on gestational age, birth weight, and body weight gain.

AIM

To validate diagnostic accuracy of the WINROP algorithm for the detection of severe ROP in a single centre cohort of Polish, high-risk preterm infant population.

MATERIAL AND METHODS

Medical records of neonates born before 32 weeks of gestation admitted to the third level neonatal centre in a 2-year retrospective investigation 79 patients were included in the study: their gestational age, birth weight and body weight gain were set in the WINROP system. The algorithm evaluated the risk for ROP divided into low or high-risk of disease and identified infants with high risk of developing severe ROP (type 1 ROP).

RESULTS

Out of 79 patients 37 received a high-risk alarm, of whom 22 developed severe ROP. Low-risk alarm was triggered in 42 infants; five of them developed type 1 ROP. The sensitivity of the WINROP was found to be 81.5% (95% CI 61.9-93.7), specificity 71.2% (95% CI 56.9-82.9), negative predictive value (NPV) 88.1% (95% CI 76.7-94.3), and positive predictive value (PPV) 59.5 (95% CI 48.1-69.9), respectively. The accuracy of the test significantly increased after combined WINROP and surfactant therapy as an additional factor - sensitivity 96.3% (95% CI 81.0-99.9), specificity 63.5% (95% CI 49.0-76.4), NPV 97.1% (95% CI 82.3-99.6), and PPV 57.8 (95% CI 48.7-66.4).

CONCLUSIONS

The WINROP algorithm sensitivity from the Polish cohort was not as high as that reported in developed countries. However, combined with additional factors (e.g. surfactant treatment) it can be useful for identifying the risk groups of sight-threatening ROP. The accuracy of the WINROP algorithm should be validated in a large multi-center prospective study in a Polish population of preterm infants.

摘要

引言

早产儿视网膜病变(ROP)是发达国家儿童失明的主要可避免原因之一。准确的诊断和治疗对于预防视力丧失至关重要。WINROP(https://www.winrop.com)是一个在线监测系统,它根据胎龄、出生体重和体重增加情况预测需要治疗的ROP风险。

目的

在波兰高危早产儿单中心队列中验证WINROP算法检测重度ROP的诊断准确性。

材料与方法

在一项为期2年的回顾性研究中,纳入了入住三级新生儿中心的32周妊娠前出生的新生儿的病历,79例患者纳入研究:将他们的胎龄、出生体重和体重增加情况输入WINROP系统。该算法评估了ROP分为低风险或高风险疾病的风险,并识别出发生重度ROP(1型ROP)高风险的婴儿。

结果

79例患者中,37例收到高风险警报,其中22例发生重度ROP。42例婴儿触发低风险警报;其中5例发生1型ROP。发现WINROP的敏感性为81.5%(95%CI 61.9-93.7),特异性为71.2%(95%CI 56.9-82.9),阴性预测值(NPV)为88.1%(9%CI 76.7-94.3),阳性预测值(PPV)为59.5(95%CI 48.1-69.9)。将WINROP和表面活性剂治疗作为附加因素后,检测的准确性显著提高——敏感性为96.3%(95%CI 81.0-99.9),特异性为63.5%(95%CI 49.0-76.4),NPV为%(95%CI 82.3-99.6),PPV为57.8(95%CI 48.7-66.4)。

结论

波兰队列中WINROP算法的敏感性不如发达国家报道的高。然而,结合其他因素(如表面活性剂治疗),它可用于识别有视力威胁性ROP的风险组。WINROP算法的准确性应在波兰早产儿人群的大型多中心前瞻性研究中得到验证。

相似文献

本文引用的文献

1
Epidemiology of blindness in children.儿童失明的流行病学
Arch Dis Child. 2017 Sep;102(9):853-857. doi: 10.1136/archdischild-2016-310532. Epub 2017 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验