Ferrario Cinzia, Ben Khadra Yousra, Czarkwiani Anna, Zakrzewski Anne, Martinez Pedro, Colombo Graziano, Bonasoro Francesco, Candia Carnevali Maria Daniela, Oliveri Paola, Sugni Michela
Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy; Center for Complexity&Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria, 16, 20133 Milano, Italy; Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria, 2, 20133 Milano, Italy.
Laboratoire de Recherche, Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia.
Dev Biol. 2018 Jan 15;433(2):297-309. doi: 10.1016/j.ydbio.2017.09.035. Epub 2017 Dec 25.
Regeneration is a post-embryonic developmental process that ensures complete morphological and functional restoration of lost body parts. The repair phase is a key step for the effectiveness of the subsequent regenerative process: in vertebrates, efficient re-epithelialisation, rapid inflammatory/immune response and post-injury tissue remodelling are fundamental aspects for the success of this phase, their impairment leading to an inhibition or total prevention of regeneration. Among deuterostomes, echinoderms display a unique combination of striking regenerative abilities and diversity of useful experimental models, although still largely unexplored. Therefore, the brittle star Amphiura filiformis and the starfish Echinaster sepositus were here used to comparatively investigate the main repair phase events after injury as well as the presence and expression of immune system and extracellular matrix (i.e. collagen) molecules using both microscopy and molecular tools. Our results showed that emergency reaction and re-epithelialisation are similar in both echinoderm models, being faster and more effective than in mammals. Moreover, in comparison to the latter, both echinoderms showed delayed and less abundant collagen deposition at the wound site (absence of fibrosis). The gene expression patterns of molecules related to the immune response, such as Ese-fib-like (starfishes) and Afi-ficolin (brittle stars), were described for the first time during echinoderm regeneration providing promising starting points to investigate the immune system role in these regeneration models. Overall, the similarities in repair events and timing within the echinoderms and the differences with what has been reported in mammals suggest that effective repair processes in echinoderms play an important role for their subsequent ability to regenerate. Targeted molecular and functional analyses will shed light on the evolution of these abilities in the deuterostomian lineage.
再生是一种胚胎后发育过程,可确保受损身体部位实现完全的形态和功能恢复。修复阶段是后续再生过程有效性的关键步骤:在脊椎动物中,高效的重新上皮化、快速的炎症/免疫反应以及损伤后组织重塑是该阶段成功的基本方面,它们的受损会导致再生受到抑制或完全无法进行。在后口动物中,棘皮动物展现出显著的再生能力与多样的实用实验模型的独特组合,尽管在很大程度上仍未被探索。因此,本文使用脆海星Amphiura filiformis和海星Echinaster sepositus,通过显微镜和分子工具,比较研究损伤后的主要修复阶段事件以及免疫系统和细胞外基质(即胶原蛋白)分子的存在和表达。我们的结果表明,两种棘皮动物模型中的应急反应和重新上皮化过程相似,比哺乳动物更快且更有效。此外,与哺乳动物相比,两种棘皮动物在伤口部位的胶原蛋白沉积均延迟且量少(无纤维化)。首次描述了棘皮动物再生过程中与免疫反应相关分子的基因表达模式,如Ese-fib-like(海星)和Afi-ficolin(脆海星),这为研究这些再生模型中免疫系统的作用提供了有前景的切入点。总体而言,棘皮动物在修复事件和时间上的相似性以及与哺乳动物报道情况的差异表明,棘皮动物有效的修复过程对其后续的再生能力起着重要作用。有针对性的分子和功能分析将揭示后口动物谱系中这些能力的进化情况。