Suppr超能文献

pyPaSWAS:基于Python的多核CPU和GPU序列比对工具。

pyPaSWAS: Python-based multi-core CPU and GPU sequence alignment.

作者信息

Warris Sven, Timal N Roshan N, Kempenaar Marcel, Poortinga Arne M, van de Geest Henri, Varbanescu Ana L, Nap Jan-Peter

机构信息

Expertise Centre ALIFE, Institute for Life Science & Technology, Hanze University of Applied Sciences Groningen, Groningen, the Netherlands.

Applied Bioinformatics, Wageningen University and Research, Wageningen, the Netherlands.

出版信息

PLoS One. 2018 Jan 2;13(1):e0190279. doi: 10.1371/journal.pone.0190279. eCollection 2018.

Abstract

BACKGROUND

Our previously published CUDA-only application PaSWAS for Smith-Waterman (SW) sequence alignment of any type of sequence on NVIDIA-based GPUs is platform-specific and therefore adopted less than could be. The OpenCL language is supported more widely and allows use on a variety of hardware platforms. Moreover, there is a need to promote the adoption of parallel computing in bioinformatics by making its use and extension more simple through more and better application of high-level languages commonly used in bioinformatics, such as Python.

RESULTS

The novel application pyPaSWAS presents the parallel SW sequence alignment code fully packed in Python. It is a generic SW implementation running on several hardware platforms with multi-core systems and/or GPUs that provides accurate sequence alignments that also can be inspected for alignment details. Additionally, pyPaSWAS support the affine gap penalty. Python libraries are used for automated system configuration, I/O and logging. This way, the Python environment will stimulate further extension and use of pyPaSWAS.

CONCLUSIONS

pyPaSWAS presents an easy Python-based environment for accurate and retrievable parallel SW sequence alignments on GPUs and multi-core systems. The strategy of integrating Python with high-performance parallel compute languages to create a developer- and user-friendly environment should be considered for other computationally intensive bioinformatics algorithms.

摘要

背景

我们之前发布的仅支持CUDA的应用程序PaSWAS,用于在基于NVIDIA的GPU上对任何类型的序列进行史密斯-沃特曼(SW)序列比对,它是特定于平台的,因此采用率低于预期。OpenCL语言得到更广泛的支持,并允许在各种硬件平台上使用。此外,有必要通过更广泛、更好地应用生物信息学中常用的高级语言(如Python),使并行计算的使用和扩展更加简单,从而促进其在生物信息学中的采用。

结果

新颖的应用程序pyPaSWAS展示了完全用Python编写的并行SW序列比对代码。它是一个通用的SW实现,可在具有多核系统和/或GPU的多个硬件平台上运行,提供准确的序列比对,还可以检查比对细节。此外,pyPaSWAS支持仿射间隙罚分。Python库用于自动系统配置、输入/输出和日志记录。通过这种方式,Python环境将促进pyPaSWAS的进一步扩展和使用。

结论

pyPaSWAS为在GPU和多核系统上进行准确且可检索的并行SW序列比对提供了一个简单的基于Python的环境。对于其他计算密集型的生物信息学算法,应考虑将Python与高性能并行计算语言集成,以创建一个对开发者和用户都友好的环境的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f564/5749749/a0a82e70550c/pone.0190279.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验