Suppr超能文献

一个红外热图像数据库及一种甲状腺结节分析新技术。

An Infrared Thermal Images Database and a New Technique for Thyroid Nodules Analysis.

作者信息

González José R, Damião Charbel, Conci Aura

机构信息

Computing Institute, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.

Antonio Pedro University Hospital, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.

出版信息

Stud Health Technol Inform. 2017;245:384-387.

Abstract

Thyroid nodules diseases are a common health problem and thyroidal cancer is becoming increasingly prevalent. They appear in the neck and bottom neck region, superficially over the trachea. Cancer tissues are characterized by higher temperatures than surrounding tissues. Thermography is a diagnostic tool increasingly used to detect cancer and abnormalities. Artificial intelligence is an approach which can be applied to thyroid nodules classification, but is necessary to have a proper number of cases with proven diagnosis. In this paper, a new database that contain infrared thermal images, clinical and physiological data is presented. The description of each nodule per patient, and the acquisition protocol (based on Dynamic Infrared Thermography approach) is considered as well. A semi-automatic method for image registration was implemented to pre-process the thermograms and a new method for the Region of Interest (ROI) extraction is proposed. Moreover, the obtained ROI results are confirmed by medical specialists and turned available for future comparison with other works.

摘要

甲状腺结节疾病是一个常见的健康问题,甲状腺癌的发病率也在日益上升。它们出现在颈部和颈部底部区域,位于气管表面。癌组织的特征是温度高于周围组织。热成像技术是一种越来越多地用于检测癌症和异常情况的诊断工具。人工智能是一种可应用于甲状腺结节分类的方法,但需要有足够数量的经证实诊断的病例。本文介绍了一个包含红外热图像、临床和生理数据的新数据库。还考虑了对每位患者每个结节的描述以及采集协议(基于动态红外热成像方法)。实施了一种半自动图像配准方法来预处理热成像图,并提出了一种新的感兴趣区域(ROI)提取方法。此外,获得的ROI结果得到了医学专家的确认,并可供未来与其他研究进行比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验