Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania.
J Neurotrauma. 2018 Aug 1;35(15):1781-1799. doi: 10.1089/neu.2017.5451. Epub 2018 Apr 24.
Cervical spinal cord injuries (SCI) result in devastating functional consequences, including respiratory dysfunction. This is largely attributed to the disruption of phrenic pathways, which control the diaphragm. Recent work has identified spinal interneurons as possible contributors to respiratory neuroplasticity. The present work investigated whether transplantation of developing spinal cord tissue, inherently rich in interneuronal progenitors, could provide a population of new neurons and growth-permissive substrate to facilitate plasticity and formation of novel relay circuits to restore input to the partially denervated phrenic motor circuit. One week after a lateralized, C3/4 contusion injury, adult Sprague-Dawley rats received allografts of dissociated, developing spinal cord tissue (from rats at gestational days 13-14). Neuroanatomical tracing and terminal electrophysiology was performed on the graft recipients 1 month later. Experiments using pseudorabies virus (a retrograde, transynaptic tracer) revealed connections from donor neurons onto host phrenic circuitry and from host, cervical interneurons onto donor neurons. Anatomical characterization of donor neurons revealed phenotypic heterogeneity, though donor-host connectivity appeared selective. Despite the consistent presence of cholinergic interneurons within donor tissue, transneuronal tracing revealed minimal connectivity with host phrenic circuitry. Phrenic nerve recordings revealed changes in burst amplitude after application of a glutamatergic, but not serotonergic antagonist to the transplant, suggesting a degree of functional connectivity between donor neurons and host phrenic circuitry that is regulated by glutamatergic input. Importantly, however, anatomical and functional results were variable across animals, and future studies will explore ways to refine donor cell populations and entrain consistent connectivity.
颈椎脊髓损伤 (SCI) 会导致严重的功能后果,包括呼吸功能障碍。这主要归因于膈神经通路的中断,膈神经控制着膈肌。最近的研究已经确定脊髓中间神经元可能是呼吸神经可塑性的贡献者。本研究调查了发育中的脊髓组织(固有丰富的中间神经元祖细胞)的移植是否可以提供新的神经元群体和生长允许的基质,以促进可塑性和形成新的中继回路,从而恢复对部分去神经的膈神经运动回路的输入。在侧方 C3/4 挫伤损伤后 1 周,成年 Sprague-Dawley 大鼠接受了分离的发育中脊髓组织(来自妊娠第 13-14 天的大鼠)同种异体移植物。在移植后 1 个月对移植物受者进行神经解剖追踪和终末电生理学检测。使用伪狂犬病毒(一种逆行、突触间示踪剂)的实验显示了供体神经元与宿主膈神经回路以及宿主颈中间神经元与供体神经元的连接。对供体神经元的解剖学特征表明存在表型异质性,但供体-宿主连接似乎是选择性的。尽管供体组织中始终存在胆碱能中间神经元,但跨神经元追踪显示与宿主膈神经回路的连接很少。膈神经记录显示,在向移植体施加谷氨酸能但不是 5-羟色胺能拮抗剂后,爆发幅度发生变化,这表明供体神经元和宿主膈神经回路之间存在一定程度的功能连接,这种连接受谷氨酸能输入的调节。然而,重要的是,解剖和功能结果在动物之间存在差异,未来的研究将探索如何细化供体细胞群体并保持一致的连接。