Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
BioSystem and Micromechanics Interdisciplinary Research Group, Singapore MIT Alliance Research Technology, Singapore 138602.
Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):E390-E399. doi: 10.1073/pnas.1717230115. Epub 2018 Jan 2.
Filopodia have a key role in sensing both chemical and mechanical cues in surrounding extracellular matrix (ECM). However, quantitative understanding is still missing in the filopodial mechanosensing of local ECM stiffness, resulting from dynamic interactions between filopodia and the surrounding 3D ECM fibers. Here we present a method for characterizing the stiffness of ECM that is sensed by filopodia based on the theory of elasticity and discrete ECM fiber. We have applied this method to a filopodial mechanosensing model for predicting directed cell migration toward stiffer ECM. This model provides us with a distribution of force and displacement as well as their time rate of changes near the tip of a filopodium when it is bound to the surrounding ECM fibers. Aggregating these effects in each local region of 3D ECM, we express the local ECM stiffness sensed by the cell and explain polarity in the cellular durotaxis mechanism.
丝状伪足在感知周围细胞外基质(ECM)中的化学和机械线索方面起着关键作用。然而,由于丝状伪足与周围 3D ECM 纤维之间的动态相互作用,丝状伪足对局部 ECM 刚度的机械敏感性仍然缺乏定量理解。在这里,我们基于弹性理论和离散 ECM 纤维提出了一种用于表征丝状伪足感知的 ECM 刚度的方法。我们已经将这种方法应用于丝状伪足机械感知模型,以预测细胞向更硬的 ECM 的定向迁移。该模型为我们提供了力和位移及其时间变化率的分布,以及当丝状伪足与周围 ECM 纤维结合时在其尖端附近的分布。在 3D ECM 的每个局部区域聚合这些效应,我们表示细胞感知的局部 ECM 刚度,并解释细胞趋硬性机制中的极性。