Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada.
Département de Médecine, Université de Montréal, Montréal, Québec, Canada.
J Bone Miner Res. 2018 May;33(5):888-898. doi: 10.1002/jbmr.3378. Epub 2018 Feb 14.
Ostm1 mutations are responsible for the most severe form of osteopetrosis in human and mice. To gain insight into Ostm1 cellular functions, we engineered a conditional in-frame deletion of the Ostm1 transmembrane domain and generated the first Ostm1 mouse model with a human mutation. Systemic targeting of Ostm1 loss of transmembrane domain produced osteopetrosis, as in the null Ostm1 gl/gl mouse. Significantly, conditional osteoclast targeting of Ostm1 resulted in similar osteopetrosis, thereby demonstrating that the intrinsic Ostm1 osteoclast deficiency is solely responsible for the mouse phenotype. Our analysis showed oversized osteoclasts with enhanced multinucleation associated with stimulation of intracellular calcium levels, of Nfatc1 nuclear re-localization, and of specific downstream Nfatc1 target genes, providing compelling evidence that Ostm1 is a negative regulator of preosteoclast fusion. Moreover, mature OCs with Ostm1 loss of transmembrane domain show appropriate levels of intracellular acidification but an altered distribution pattern, highlighting misregulation of endolysosome localization and dispersion. Consistently, the hydrolases tartrate-resistant acid phosphatase (TRAP) and cathepsin K (Ctsk) normally produced are sequestered within the osteoclasts and are not extracellularly secreted. These studies defined bifunctional roles for Ostm1 as a major regulator of preosteoclast cytoskeletal rearrangements toward cell multinucleation and of mature osteoclast intracellular lysosomal trafficking and exocytosis mechanism, both of which are essential for bone resorption. Importantly, these Ostm1 molecular and regulatory functions could serve as preclinical targets in this mouse model toward osteoclastogenic pathologies as osteoporosis and inflammation-induced bone loss. © 2018 American Society for Bone and Mineral Research.
Ostm1 突变是导致人类和小鼠最严重形式的骨质增生症的原因。为了深入了解 Ostm1 的细胞功能,我们构建了 Ostm1 跨膜结构域的条件性框内缺失,并生成了具有人类突变的首个 Ostm1 小鼠模型。Ostm1 跨膜结构域缺失的系统性靶向导致了骨质增生症,就像 Ostm1 gl/gl 小鼠的缺失一样。重要的是,条件性破骨细胞靶向 Ostm1 导致了类似的骨质增生症,从而证明内在的 Ostm1 破骨细胞缺乏是小鼠表型的唯一原因。我们的分析表明,破骨细胞过大,多核化增强,与细胞内钙水平的刺激、Nfatc1 核重新定位以及特定下游 Nfatc1 靶基因有关,这提供了令人信服的证据,证明 Ostm1 是破骨前融合的负调节剂。此外,具有 Ostm1 跨膜结构域缺失的成熟 OC 显示出适当的细胞内酸化水平,但分布模式发生改变,突出了内溶酶体定位和分散的失调。一致地,正常产生的水解酶抗酒石酸酸性磷酸酶 (TRAP) 和组织蛋白酶 K (Ctsk) 被隔离在破骨细胞内,而不会分泌到细胞外。这些研究定义了 Ostm1 的双重功能,作为破骨前细胞骨架向多核化重排的主要调节剂,以及成熟破骨细胞细胞内溶酶体运输和胞吐机制的调节剂,这两者对于骨吸收都是必不可少的。重要的是,这些 Ostm1 分子和调节功能可以作为这种小鼠模型中的临床前靶点,用于骨质疏松症和炎症诱导的骨丢失等破骨细胞生成病理学。© 2018 美国骨骼与矿物质研究协会。