State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-Sen University , Guangzhou 510275, P. R. China.
Institute of Semiconductors, Chinese Academy of Sciences , Beijing 100083, China.
ACS Nano. 2018 Jan 23;12(1):425-431. doi: 10.1021/acsnano.7b06633. Epub 2018 Jan 9.
Over the past two decades, solar- and astrophysicists and material scientists have been researching and developing new-generation semiconductor-based vacuum ultraviolet (VUV) detectors with low power consumption and small size for replacing traditional heavy and high-energy-consuming microchannel-detection systems, to study the formation and evolution of stars. However, the most desirable semiconductor-based VUV photovoltaic detector capable of achieving zero power consumption has not yet been achieved. With high-crystallinity multistep epitaxial grown AlN as a VUV-absorbing layer for photogenerated carriers and p-type graphene (with unexpected VUV transmittance >96%) as a transparent electrode to collect excited holes, we constructed a heterojunction device with photovoltaic detection for VUV light. The device exhibits an encouraging VUV photoresponse, high external quantum efficiency (EQE) and extremely fast tempera response (80 ns, 10-10 times faster than that of the currently reported VUV photoconductive devices). This work has provided an idea for developing zero power consumption and integrated VUV photovoltaic detectors with ultrafast and high-sensitivity VUV detection capability, which not only allows future spacecraft to operate with longer service time and lower launching cost but also ensures an ultrafast evolution of interstellar objects.
在过去的二十年中,太阳物理和天体物理以及材料科学家一直在研究和开发基于新一代半导体的真空紫外(VUV)探测器,这些探测器具有低功耗和小尺寸,可替代传统的重型和高能耗微通道检测系统,用于研究恒星的形成和演化。然而,最理想的能够实现零功耗的基于半导体的 VUV 光伏探测器尚未实现。我们使用具有多步外延生长的高结晶 AlN 作为光生载流子的 VUV 吸收层,以及具有出乎意料的 VUV 透射率>96%的 p 型石墨烯作为透明电极来收集激发的空穴,构建了用于 VUV 光的光伏检测异质结器件。该器件表现出令人鼓舞的 VUV 光响应、高外量子效率(EQE)和极快的温度响应(80 ns,比目前报道的 VUV 光电导器件快 10-10 倍)。这项工作为开发零功耗和集成的 VUV 光伏探测器提供了思路,这些探测器具有超快和高灵敏度的 VUV 检测能力,不仅可以使未来的航天器具有更长的工作时间和更低的发射成本,还可以确保对星际物体的超快演化进行监测。