Suppr超能文献

使用“大数据”与综合数据的替代测量方法来预测2016年美国大选。

Using "Big Data" Versus Alternative Measures of Aggregate Data to Predict the U.S. 2016 Presidential Election.

作者信息

Ma-Kellams Christine, Bishop Brianna, Zhang Mei Fong, Villagrana Brian

机构信息

University of La Verne, La Verne, CA, USA.

出版信息

Psychol Rep. 2018 Aug;121(4):726-735. doi: 10.1177/0033294117736318. Epub 2017 Oct 12.

Abstract

To what extent could "Big Data" predict the results of the 2016 U.S. presidential election better than more conventional sources of aggregate measures? To test this idea, the present research used Google search trends versus other forms of state-level data (i.e., both behavioral measures like the incidence of hate crimes, hate groups, and police brutality and implicit measures like Implicit Association Test (IAT) data) to predict each state's popular vote for the 2016 presidential election. Results demonstrate that, when taken in isolation, zero-order correlations reveal that prevalence of hate groups, prevalence of hate crimes, Google searches for racially charged terms (i.e., related to White supremacy groups, racial slurs, and the Nazi movement), and political conservatism were all significant predictors of popular support for Trump. However, subsequent hierarchical regression analyses show that when these predictors are considered simultaneously, only Google search data for historical White supremacy terms (e.g., "Adolf Hitler") uniquely predicted election outcomes earlier and beyond political conservatism. Thus, Big Data, in the form of Google search, emerged as a more potent predictor of political behavior than other aggregate measures, including implicit attitudes and behavioral measures of racial bias. Implications for the role of racial bias in the 2016 presidential election in particular and the utility of Google search data more generally are discussed.

摘要

与更为传统的综合测量来源相比,“大数据”在多大程度上能更好地预测2016年美国总统大选的结果?为了验证这一想法,本研究使用谷歌搜索趋势与其他形式的州级数据(即仇恨犯罪发生率、仇恨团体和警察暴力行为等行为测量数据,以及内隐联想测验(IAT)数据等内隐测量数据)来预测每个州在2016年总统大选中的普选票数。结果表明,单独来看,零阶相关性显示仇恨团体的盛行率、仇恨犯罪的盛行率、谷歌对带有种族色彩词汇(即与白人至上主义团体、种族污蔑和纳粹运动相关的词汇)的搜索,以及政治保守主义都是特朗普民众支持率的显著预测因素。然而,随后的分层回归分析表明,当同时考虑这些预测因素时,只有谷歌对历史上白人至上主义词汇(如“阿道夫·希特勒”)的搜索数据能够独特地比政治保守主义更早且更准确地预测选举结果。因此,谷歌搜索形式的大数据成为了比其他综合测量(包括种族偏见的内隐态度和行为测量)更有力的政治行为预测指标。本文讨论了种族偏见在2016年总统大选中的作用,以及谷歌搜索数据更广泛的效用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验