Suppr超能文献

数据猴2.0:一款用于描述选择性及其他进化过程的现代网络应用程序。

Datamonkey 2.0: A Modern Web Application for Characterizing Selective and Other Evolutionary Processes.

作者信息

Weaver Steven, Shank Stephen D, Spielman Stephanie J, Li Michael, Muse Spencer V, Kosakovsky Pond Sergei L

机构信息

Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA.

Department of Statistics, North Carolina State University, Raleigh, NC.

出版信息

Mol Biol Evol. 2018 Mar 1;35(3):773-777. doi: 10.1093/molbev/msx335.

Abstract

Inference of how evolutionary forces have shaped extant genetic diversity is a cornerstone of modern comparative sequence analysis. Advances in sequence generation and increased statistical sophistication of relevant methods now allow researchers to extract ever more evolutionary signal from the data, albeit at an increased computational cost. Here, we announce the release of Datamonkey 2.0, a completely re-engineered version of the Datamonkey web-server for analyzing evolutionary signatures in sequence data. For this endeavor, we leveraged recent developments in open-source libraries that facilitate interactive, robust, and scalable web application development. Datamonkey 2.0 provides a carefully curated collection of methods for interrogating coding-sequence alignments for imprints of natural selection, packaged as a responsive (i.e. can be viewed on tablet and mobile devices), fully interactive, and API-enabled web application. To complement Datamonkey 2.0, we additionally release HyPhy Vision, an accompanying JavaScript application for visualizing analysis results. HyPhy Vision can also be used separately from Datamonkey 2.0 to visualize locally executed HyPhy analyses. Together, Datamonkey 2.0 and HyPhy Vision showcase how scientific software development can benefit from general-purpose open-source frameworks. Datamonkey 2.0 is freely and publicly available at http://www.datamonkey.org, and the underlying codebase is available from https://github.com/veg/datamonkey-js.

摘要

推断进化力量如何塑造现存的遗传多样性是现代比较序列分析的基石。序列生成技术的进步以及相关方法在统计方面的日益成熟,使得研究人员现在能够从数据中提取越来越多的进化信号,尽管计算成本有所增加。在此,我们宣布发布Datamonkey 2.0,这是Datamonkey网络服务器的一个完全重新设计的版本,用于分析序列数据中的进化特征。为此,我们利用了开源库的最新发展,这些发展有助于开发交互式、稳健且可扩展的网络应用程序。Datamonkey 2.0提供了精心策划的一系列方法,用于审视编码序列比对中的自然选择印记,并将其打包成一个响应式(即可以在平板电脑和移动设备上查看)、完全交互式且支持API的网络应用程序。为了补充Datamonkey 2.0,我们还发布了HyPhy Vision,这是一个用于可视化分析结果的配套JavaScript应用程序。HyPhy Vision也可以与Datamonkey 2.0分开使用,以可视化本地执行的HyPhy分析。Datamonkey 2.0和HyPhy Vision共同展示了科学软件开发如何能够从通用开源框架中受益。Datamonkey 2.0可在http://www.datamonkey.org免费公开获取,其底层代码库可从https://github.com/veg/datamonkey-js获取。

相似文献

7
Web-based network analysis and visualization using CellMaps.使用CellMaps进行基于网络的分析和可视化。
Bioinformatics. 2016 Oct 1;32(19):3041-3. doi: 10.1093/bioinformatics/btw332. Epub 2016 Jun 13.
8
phylo-node: A molecular phylogenetic toolkit using Node.js.系统发育节点:一个使用Node.js的分子系统发育工具包。
PLoS One. 2017 Apr 14;12(4):e0175480. doi: 10.1371/journal.pone.0175480. eCollection 2017.
10
GARD: a genetic algorithm for recombination detection.GARD:一种用于重组检测的遗传算法。
Bioinformatics. 2006 Dec 15;22(24):3096-8. doi: 10.1093/bioinformatics/btl474. Epub 2006 Nov 16.

引用本文的文献

4
Retrospective Study Reveals Decades of PCV4 Circulation in Spain.回顾性研究揭示西班牙数十年的PCV4传播情况。
Transbound Emerg Dis. 2025 Jul 22;2025:9326570. doi: 10.1155/tbed/9326570. eCollection 2025.

本文引用的文献

1
Ten Simple Rules for Developing Usable Software in Computational Biology.计算生物学中开发可用软件的十条简单规则。
PLoS Comput Biol. 2017 Jan 5;13(1):e1005265. doi: 10.1371/journal.pcbi.1005265. eCollection 2017 Jan.
7
Gene-wide identification of episodic selection.全基因范围内间歇性选择的鉴定。
Mol Biol Evol. 2015 May;32(5):1365-71. doi: 10.1093/molbev/msv035. Epub 2015 Feb 19.
9
RELAX: detecting relaxed selection in a phylogenetic framework.RELAX:在系统发育框架中检测松弛选择
Mol Biol Evol. 2015 Mar;32(3):820-32. doi: 10.1093/molbev/msu400. Epub 2014 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验