NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore , 28 Medical Drive, Singapore117456, Singapore.
Department of Physics, National University of Singapore , 2 Science Drive 3, Singapore 117542, Singapore.
ACS Nano. 2018 Feb 27;12(2):1859-1867. doi: 10.1021/acsnano.7b08682. Epub 2018 Jan 17.
Monolayer two-dimensional transition-metal dichalcogenides (2D TMDCs) exhibit promising characteristics in miniaturized nonlinear optical frequency converters, due to their inversion asymmetry and large second-order nonlinear susceptibility. However, these materials usually have very short light interaction lengths with the pump laser because they are atomically thin, such that second-harmonic generation (SHG) is generally inefficient. In this paper, we fabricate a judiciously structured 150 nm-thick planar surface consisting of monolayer tungsten diselenide and sub-20 nm-wide gold trenches on flexible substrates, reporting ∼7000-fold SHG enhancement without peak broadening or background in the spectra as compared to WSe on as-grown sapphire substrates. Our proof-of-concept experiment yields effective second-order nonlinear susceptibility of 2.1 × 10 pm/V. Three orders of magnitude enhancement is maintained with pump wavelength ranging from 800 to 900 nm, breaking the limitation of narrow pump wavelength range for cavity-enhanced SHG. In addition, SHG amplitude can be dynamically controlled via selective excitation of the lateral gap plasmon by rotating the laser polarization. Such a fully open, flat, and ultrathin profile enables a great variety of functional samples with high SHG from one patterned silicon substrate, favoring scalable production of nonlinear converters. The surface accessibility also enables integration with other optical components for information processing in an ultrathin and flexible form.
单层二维过渡金属二卤族化合物(2D TMDC)由于其反转不对称性和大的二阶非线性极化率,在小型化非线性光频率转换器中表现出很有前途的特性。然而,由于这些材料非常薄,它们与泵浦激光的光相互作用长度通常很短,因此二次谐波产生(SHG)通常效率很低。在本文中,我们在柔性衬底上制造了一种由单层二硒化钨和亚 20nm 宽的金槽组成的巧妙结构的 150nm 厚平面,与在蓝宝石衬底上生长的 WSe 相比,在光谱中没有峰展宽或背景的情况下,SHG 增强了约 7000 倍。我们的概念验证实验得到了 2.1×10 pm/V 的有效二阶非线性极化率。在 800nm 到 900nm 的泵浦波长范围内,三阶增强得以维持,突破了腔增强 SHG 的窄泵浦波长范围的限制。此外,通过旋转激光偏振,可以选择性地激发横向间隙等离子体来动态控制 SHG 幅度。这种完全开放、平坦和超薄的结构可以从一个图案化的硅衬底上产生各种具有高 SHG 的功能样品,有利于非线性转换器的规模化生产。表面可及性还可以与其他光学组件集成,以实现超轻薄和灵活的信息处理。