Wu Pei-Yuan, Lee Wei-Qing, Liu Chang-Hua, Huang Chen-Bin
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan.
Nat Commun. 2024 Feb 29;15(1):1855. doi: 10.1038/s41467-024-46209-8.
Nonlinear nanophotonic circuits, renowned for their compact form and integration capabilities, hold potential for advancing high-capacity optical signal processing. However, limited practicality arises from low nonlinear conversion efficiency. Transition metal dichalcogenides (TMDs) could present a promising avenue to address this challenge, given their superior optical nonlinear characteristics and compatibility with diverse device platforms. Nevertheless, this potential remains largely unexplored, with current endeavors predominantly focusing on the demonstration of TMDs' coherent nonlinear signals via free-space excitation and collection. In this work, we perform direct integration of TMDs onto a plasmonic nanocircuitry. By controlling the polarization angle of the input laser, we show selective routing of second-harmonic generation (SHG) signals from a MoSe monolayer within the plasmonic circuit. Routing extinction ratios of 14.86 dB are achieved, demonstrating good coherence preservation in this hybrid nanocircuit. Additionally, our characterization indicates that the integration of TMDs leads to a 13.8-fold SHG enhancement, compared with the pristine nonlinear plasmonic nanocircuitry. These distinct features-efficient SHG generation, coupling, and controllable routing-suggest that our hybrid TMD-plasmonic nanocircuitry could find immediate applications including on-chip optical frequency conversion, selective routing, switching, logic operations, as well as quantum operations.
非线性纳米光子电路以其紧凑的形式和集成能力而闻名,在推进高容量光信号处理方面具有潜力。然而,低非线性转换效率导致其实用性有限。过渡金属二硫属化物(TMDs)鉴于其优异的光学非线性特性以及与各种器件平台的兼容性,可能为应对这一挑战提供一条有前途的途径。尽管如此,这一潜力在很大程度上仍未得到探索,目前的研究主要集中在通过自由空间激发和收集来展示TMDs的相干非线性信号。在这项工作中,我们将TMDs直接集成到等离子体纳米电路上。通过控制输入激光的偏振角,我们展示了等离子体电路中来自MoSe单层的二次谐波产生(SHG)信号的选择性路由。实现了14.86 dB的路由消光比,证明了这种混合纳米电路中良好的相干性保持。此外,我们的表征表明,与原始的非线性等离子体纳米电路相比,TMDs的集成导致SHG增强了13.8倍。这些独特的特性——高效的SHG产生、耦合和可控路由——表明我们的混合TMD-等离子体纳米电路可立即应用于包括片上光学频率转换、选择性路由、开关、逻辑操作以及量子操作等领域。