Alchem Biotech Research, Toronto, ON, Canada.
Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112-2272, USA.
Cell Mol Neurobiol. 2018 Jul;38(5):1021-1031. doi: 10.1007/s10571-017-0572-3. Epub 2018 Jan 4.
Alzheimer's disease (AD) of the brain neocortex and age-related macular degeneration (AMD) of the retina are two complex neurodegenerative disorders, which (i) involve the progressive dysregulation and deterioration of multiple neurobiological signaling pathways, (ii) exhibit the temporal accumulation of pro-inflammatory lesions including the amyloid beta (Aβ) peptide-containing senile plaques of AD and the drusen of AMD, and (iii) culminate in an insidious inflammatory neurodegeneration ending, respectively, in neural cell atrophy and death and progressive loss of cognition and central visual function. Recent independent research studies have indicated that AD and AMD share common, pathological signaling defects and disease mechanisms at the molecular genetic level. Using high-integrity total RNA samples pooled from AD brain and AMD retina, microfluidic hybridization miRNA arrays, and bioinformatics, the current study was undertaken to quantify microRNA (miRNA) speciation and complexity common to both AD and AMD. These small non-coding (sncRNAs) are known to post-transcriptionally regulate multiple neurobiological pathways and an abundance of research information has already been generated on the roles of these miRNAs in pathological situations involving inflammatory neuropathology and neural cell decline. Here, for the first time, we report the sequence and abundance of a septet of sncRNAs including miRNA-7, miRNA-9-1, miRNA-23a/miRNA-27a, miRNA-34a, miRNA-125b-1, miRNA-146a, and miRNA-155 that are significantly increased in abundance and common to both AD-affected superior temporal lobe neocortex (Brodmann A22) and the AMD-affected macular region of the retina. Bioinformatics, miRNA-mRNA complementarity, next-gen RNA sequencing, and feature alignment analysis further indicate that these 7 up-regulated miRNAs have the potential to interact with and down-regulate ~ 9460 target messenger RNAs (mRNAs; about 3.5% of the genome) involved in the synchronization of amyloid production and clearance, phagocytosis, innate-immune, pro-inflammatory, and neurotrophic signaling and/or synaptogenesis in diseased tissues.
阿尔茨海默病(AD)的大脑皮质和年龄相关性黄斑变性(AMD)的视网膜是两种复杂的神经退行性疾病,(i)涉及多个神经生物学信号通路的进行性失调和恶化,(ii)表现出包括 AD 中含有淀粉样β(Aβ)肽的老年斑和 AMD 的玻璃膜疣在内的促炎病变的时间累积,以及(iii)最终导致隐匿性炎症性神经退行性变,分别导致神经细胞萎缩和死亡以及认知和中央视觉功能的进行性丧失。最近的独立研究表明,AD 和 AMD 在分子遗传水平上具有共同的、病理性的信号缺陷和疾病机制。本研究使用来自 AD 大脑和 AMD 视网膜的高完整性总 RNA 样本、微流控杂交 miRNA 阵列和生物信息学,来定量 AD 和 AMD 共有的 miRNA (miRNA)特异性和复杂性。这些小非编码(sncRNA)已知在后转录水平上调节多个神经生物学途径,并且已经产生了大量关于这些 miRNA 在涉及炎症性神经病理学和神经细胞衰退的病理情况下的作用的研究信息。在这里,我们首次报告了包括 miRNA-7、miRNA-9-1、miRNA-23a/miRNA-27a、miRNA-34a、miRNA-125b-1、miRNA-146a 和 miRNA-155 在内的 7 种 sncRNA 的序列和丰度,这些 sncRNA 的丰度显著增加且在 AD 受累的颞上叶皮质(Brodmann A22)和 AMD 受累的视网膜黄斑区中均存在。生物信息学、miRNA-mRNA 互补性、下一代 RNA 测序和特征对齐分析进一步表明,这 7 个上调的 miRNA 有可能相互作用并下调约 9460 个靶信使 RNA(mRNA;约占基因组的 3.5%),这些 mRNA 参与淀粉样蛋白产生和清除、吞噬作用、先天免疫、促炎和神经营养信号以及/或病变组织中的突触发生的同步化。