Department of Chemistry, Massachusetts Institute of Technology , 170 Albany Street, Cambridge, Massachusetts 02139, United States.
J Am Chem Soc. 2018 Jan 31;140(4):1514-1524. doi: 10.1021/jacs.7b12464. Epub 2018 Jan 22.
The influenza M2 protein forms a tetrameric proton channel that conducts protons from the acidic endosome into the virion by shuttling protons between water and a transmembrane histidine. Previous NMR studies have shown that this histidine protonates and deprotonates on the microsecond time scale. However, M2's proton conduction rate is 10-1000 s, more than 2 orders of magnitude slower than the histidine-water proton-exchange rate. M2 is also known to be conformationally plastic. To address the disparity between the functional time scale and the time scales of protein conformational dynamics and water dynamics, we have now investigated a W41F mutant of the M2 transmembrane domain using solid-state NMR. C chemical shifts of the membrane-bound peptide indicate the presence of two distinct tetramer conformations, whose concentrations depend exclusively on pH and hence the charge-state distribution of the tetramers. High-temperature 2D correlation spectra indicate that these two conformations interconvert at a rate of ∼400 s when the +2 and +3 charge states dominate, which gives the first experimental evidence of protein conformational motion on the transport time scale. Protein C-detected water H T relaxation measurements show that channel water relaxes an order of magnitude faster than bulk water and membrane-associated water, indicating that channel water undergoes nanosecond motion in a pH-independent fashion. These results connect motions on three time scales to explain M2's proton-conduction mechanism: picosecond-to-nanosecond motions of water molecules facilitate proton Grotthuss hopping, microsecond motions of the histidine side chain allow water-histidine proton transfer, while millisecond motions of the entire four-helix bundle constitute the rate-limiting step, dictating the number of protons released into the virion.
流感 M2 蛋白形成四聚质子通道,通过质子在水和跨膜组氨酸之间穿梭,将质子从酸性内涵体导入病毒。先前的 NMR 研究表明,组氨酸在微秒时间尺度上质子化和去质子化。然而,M2 的质子传导速率为 10-1000 s,比组氨酸-水质子交换速率慢 2 个数量级以上。M2 也被认为是构象可塑性的。为了解决功能时间尺度与蛋白质构象动力学和水动力学时间尺度之间的差异,我们现在使用固态 NMR 研究了 M2 跨膜结构域的 W41F 突变体。结合膜的肽的 C 化学位移表明存在两种不同的四聚体构象,其浓度仅取决于 pH 值,因此取决于四聚体的电荷状态分布。高温 2D 相关光谱表明,当 +2 和 +3 电荷状态占主导地位时,这两种构象以约 400 s 的速率相互转换,这首次提供了关于运输时间尺度上蛋白质构象运动的实验证据。蛋白 C 检测的水 H T 弛豫测量表明,通道水的弛豫速度比体相水和膜结合水快一个数量级,表明通道水以 pH 独立的方式进行纳秒运动。这些结果将三个时间尺度上的运动联系起来,以解释 M2 的质子传导机制:水分子的皮秒到纳秒运动促进质子 Grotthuss 跳跃,组氨酸侧链的微秒运动允许水-组氨酸质子转移,而整个四螺旋束的毫秒运动构成限速步骤,决定释放到病毒中的质子数量。