Suppr超能文献

基于体素相关高斯混合模型的超体素分割

Supervoxel Segmentation with Voxel-Related Gaussian Mixture Model.

作者信息

Ban Zhihua, Chen Zhong, Liu Jianguo

机构信息

National Key Laboratory of Science and Technology on Multi-spectral Information Processing, School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

Sensors (Basel). 2018 Jan 5;18(1):128. doi: 10.3390/s18010128.

Abstract

Extended from superpixel segmentation by adding an additional constraint on temporal consistency, supervoxel segmentation is to partition video frames into atomic segments. In this work, we propose a novel scheme for supervoxel segmentation to address the problem of new and moving objects, where the segmentation is performed on every two consecutive frames and thus each internal frame has two valid superpixel segmentations. This scheme provides coarse-grained parallel ability, and subsequent algorithms can validate their result using two segmentations that will further improve robustness. To implement this scheme, a voxel-related Gaussian mixture model (GMM) is proposed, in which each supervoxel is assumed to be distributed in a local region and represented by two Gaussian distributions that share the same color parameters to capture temporal consistency. Our algorithm has a lower complexity with respect to frame size than the traditional GMM. According to our experiments, it also outperforms the state-of-the-art in accuracy.

摘要

通过在超像素分割的基础上增加时间一致性的额外约束,超体素分割旨在将视频帧划分为原子段。在这项工作中,我们提出了一种新颖的超体素分割方案,以解决新出现和移动对象的问题,其中分割是在每两个连续帧上进行的,因此每个内部帧有两个有效的超像素分割。该方案提供了粗粒度的并行能力,后续算法可以使用这两个分割来验证其结果,这将进一步提高鲁棒性。为了实现该方案,提出了一种与体素相关的高斯混合模型(GMM),其中每个超体素被假设分布在一个局部区域,并由两个共享相同颜色参数的高斯分布表示,以捕获时间一致性。与传统的高斯混合模型相比,我们的算法在帧大小方面具有更低的复杂度。根据我们的实验,它在准确性方面也优于现有技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e21d/5795368/3c7135be1933/sensors-18-00128-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验