Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany; Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Bio Pilot Plant, Adolf-Reichwein-Straße 23, 07745, Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743, Jena, Germany.
Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743, Jena, Germany.
Colloids Surf B Biointerfaces. 2018 Mar 1;163:201-208. doi: 10.1016/j.colsurfb.2017.12.037. Epub 2017 Dec 20.
Surface structures in the nanometer range emerge as the next evolutionary breakthrough in the design of biomaterials with antimicrobial properties. However, in order to advance the application of surface nanostructuring strategies in medical implants, the very nature of the microbial repealing mechanism has yet to be understood. Herein, we demonstrate that the random immobilization of gold nanoparticles (AuNPs) on a material's surface generates the possibility to explore microbial adhesion in dependence of contact point densities at the biointerface between the microbe, i.e., Escherichia coli and the material's surface. By optimizing the contact point density defined by individual AuNPs, yet keeping the surface chemistry unchanged as evidenced by X-ray photoelectron spectroscopy, we show that the initial microbial adhesion can be successfully reduced up to 50%, compared to control (unstructured) surfaces. Furthermore, we observed a decrease in the size of microbial cells adhered to nanostructured surfaces. The results show that the spatial distance between the contact points plays a crucial role in regulating microbial adhesion, thus advancing our understanding of the microbial adhesion mechanism on nanostructured surfaces. We suggest that the introduced strategy for nanostructuring materials surfaces opens a research direction for highly microbial-resistant biomaterials.
表面纳米结构的出现是具有抗菌性能的生物材料设计的下一个重大突破。然而,为了推进表面纳米结构策略在医疗植入物中的应用,微生物排斥机制的本质仍有待理解。在此,我们证明了通过将金纳米粒子(AuNPs)随机固定在材料表面上,从而有可能根据微生物(即大肠杆菌)与材料表面之间生物界面处的接触点密度来探索微生物附着。通过优化由单个 AuNP 定义的接触点密度,同时保持表面化学性质不变(如 X 射线光电子能谱所示),我们表明与对照(未结构化)表面相比,初始微生物附着可以成功减少 50%。此外,我们观察到附着在纳米结构表面上的微生物细胞的尺寸减小。结果表明,接触点之间的空间距离在调节微生物附着方面起着至关重要的作用,从而加深了我们对微生物在纳米结构表面上的附着机制的理解。我们建议,这种用于材料表面纳米结构化的策略为高度抗微生物的生物材料开辟了一个研究方向。