Suppr超能文献

体内电子顺磁共振:向临床转化的自由基新概念。

In Vivo Electron Paramagnetic Resonance: Radical Concepts for Translation to the Clinical Setting.

机构信息

1 In Vivo Multifunctional Magnetic Resonance center, Robert C. Byrd Health Sciences Center, West Virginia University , Morgantown, West Virginia.

2 Department of Biochemistry, School of Medicine, West Virginia University , Morgantown, West Virginia.

出版信息

Antioxid Redox Signal. 2018 May 20;28(15):1341-1344. doi: 10.1089/ars.2017.7472. Epub 2018 Feb 12.

Abstract

Electron paramagnetic resonance (EPR)-based spectroscopic and imaging techniques allow for the study of free radicals-molecules with one or more unpaired electrons. Biological EPR applications include detection of endogenous biologically relevant free radicals as well as use of specially designed exogenous radicals to probe local microenvironments. This Forum focuses on recent advances in the field of in vivo EPR applications discussed at the International Conference on Electron Paramagnetic Resonance Spectroscopy and Imaging of Biological Systems (EPR-2017). Although direct EPR detection of endogenous free radicals such as reactive oxygen species (ROS) in vivo remains unlikely in most cases, alternative approaches based on applications of advanced spin traps and probes for detection of paramagnetic products of ROS reactions often allow for specific assessment of free radical production in living subjects. In recent decades, significant progress has been achieved in the development and in vivo application of specially designed paramagnetic probes as "molecular spies" to assess and map physiologically relevant functional information such as tissue oxygenation, redox status, pH, and concentrations of interstitial inorganic phosphate and intracellular glutathione. Recent progress in clinical EPR instrumentation and development of biocompatible paramagnetic probes for in vivo multifunctional tissue profiling will eventually make translation of the EPR techniques into clinical settings possible. Antioxid. Redox Signal. 28, 1341-1344.

摘要

基于电子顺磁共振(EPR)的光谱和成像技术可用于研究自由基——具有一个或多个不成对电子的分子。生物 EPR 的应用包括检测内源性生物相关自由基,以及使用专门设计的外源性自由基来探测局部微环境。本论坛聚焦于在国际电子顺磁共振波谱和生物系统成像会议(EPR-2017)上讨论的体内 EPR 应用领域的最新进展。尽管在大多数情况下,直接在体内检测内源性自由基(如活性氧物种(ROS))的 EPR 检测仍不太可能,但基于应用先进的自旋捕获剂和探针来检测 ROS 反应的顺磁产物的替代方法,通常允许对活体中自由基的产生进行特定评估。在过去的几十年中,在专门设计的顺磁探针的开发和体内应用方面取得了重大进展,这些探针作为“分子间谍”,用于评估和绘制与生理相关的功能信息,如组织氧合、氧化还原状态、pH 值以及细胞间无机磷酸盐和细胞内谷胱甘肽的浓度。临床 EPR 仪器的最新进展和用于体内多功能组织分析的生物相容顺磁探针的开发,最终将使 EPR 技术转化为临床应用成为可能。抗氧化。氧化还原信号。28,1341-1344。

相似文献

1
In Vivo Electron Paramagnetic Resonance: Radical Concepts for Translation to the Clinical Setting.
Antioxid Redox Signal. 2018 May 20;28(15):1341-1344. doi: 10.1089/ars.2017.7472. Epub 2018 Feb 12.
4
Electron Paramagnetic Resonance Measurements of Reactive Oxygen Species by Cyclic Hydroxylamine Spin Probes.
Antioxid Redox Signal. 2018 May 20;28(15):1433-1443. doi: 10.1089/ars.2017.7396. Epub 2017 Nov 17.
9
In Vivo Application of Proton-Electron Double-Resonance Imaging.
Antioxid Redox Signal. 2018 May 20;28(15):1345-1364. doi: 10.1089/ars.2017.7341. Epub 2017 Nov 13.
10
In Vivo and In Situ Detection of Macromolecular Free Radicals Using Immuno-Spin Trapping and Molecular Magnetic Resonance Imaging.
Antioxid Redox Signal. 2018 May 20;28(15):1404-1415. doi: 10.1089/ars.2017.7390. Epub 2017 Dec 11.

引用本文的文献

2
Quantitation of spin probe-detectable oxidants in cells using electron paramagnetic resonance spectroscopy: To probe or to trap?
Free Radic Biol Med. 2020 Jul;154:84-94. doi: 10.1016/j.freeradbiomed.2020.04.020. Epub 2020 May 4.
3
Solvent Effects on Skin Penetration and Spatial Distribution of the Hydrophilic Nitroxide Spin Probe PCA Investigated by EPR.
Cell Biochem Biophys. 2020 Jun;78(2):127-137. doi: 10.1007/s12013-020-00908-3. Epub 2020 Apr 17.

本文引用的文献

1
Redox-Active Quinone Chelators: Properties, Mechanisms of Action, Cell Delivery, and Cell Toxicity.
Antioxid Redox Signal. 2018 May 20;28(15):1394-1403. doi: 10.1089/ars.2017.7406. Epub 2018 Jan 3.
3
Pulsed Electron Paramagnetic Resonance Imaging: Applications in the Studies of Tumor Physiology.
Antioxid Redox Signal. 2018 May 20;28(15):1378-1393. doi: 10.1089/ars.2017.7391. Epub 2018 Jan 9.
4
In Vivo and In Situ Detection of Macromolecular Free Radicals Using Immuno-Spin Trapping and Molecular Magnetic Resonance Imaging.
Antioxid Redox Signal. 2018 May 20;28(15):1404-1415. doi: 10.1089/ars.2017.7390. Epub 2017 Dec 11.
5
Electron Paramagnetic Resonance Measurements of Reactive Oxygen Species by Cyclic Hydroxylamine Spin Probes.
Antioxid Redox Signal. 2018 May 20;28(15):1433-1443. doi: 10.1089/ars.2017.7396. Epub 2017 Nov 17.
6
Detection and Characterization of Reactive Oxygen and Nitrogen Species in Biological Systems by Monitoring Species-Specific Products.
Antioxid Redox Signal. 2018 May 20;28(15):1416-1432. doi: 10.1089/ars.2017.7398. Epub 2017 Nov 17.
7
In Vivo Application of Proton-Electron Double-Resonance Imaging.
Antioxid Redox Signal. 2018 May 20;28(15):1345-1364. doi: 10.1089/ars.2017.7341. Epub 2017 Nov 13.
8
Using anti-5,5-dimethyl-1-pyrroline N-oxide (anti-DMPO) to detect protein radicals in time and space with immuno-spin trapping.
Free Radic Biol Med. 2004 May 15;36(10):1214-23. doi: 10.1016/j.freeradbiomed.2004.02.077.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验