Suppr超能文献

利用代谢工程化的谷氨酸棒杆菌通过有氧生长抑制生物过程生产 4-羟基苯甲酸。

Production of 4-Hydroxybenzoic Acid by an Aerobic Growth-Arrested Bioprocess Using Metabolically Engineered Corynebacterium glutamicum.

机构信息

Molecular Microbiology and Biotechnology Group, Research Institute of Innovative Technology for the Earth (RITE), Kizugawa, Kyoto, Japan.

Green Phenol Development Co., Ltd., Kizugawa, Kyoto, Japan.

出版信息

Appl Environ Microbiol. 2018 Mar 1;84(6). doi: 10.1128/AEM.02587-17. Print 2018 Mar 15.

Abstract

was metabolically engineered to produce 4-hydroxybenzoic acid (4-HBA), a valuable aromatic compound used as a raw material for the production of liquid crystal polymers and paraben. was found to have a higher tolerance to 4-HBA toxicity than previously reported hosts used for the production of genetically engineered 4-HBA. To obtain higher titers of 4-HBA, we employed a stepwise overexpression of all seven target genes in the shikimate pathway in Specifically, multiple chromosomal integrations of a mutated gene from , encoding a 3-deoxy-d-arabinoheptulosonic acid 7-phosphate (DAHP) synthase, and wild-type from , encoding chorismate synthase, shikimate kinase, and 3-dehydroquinate synthase, were effective in increasing product titers. The last step of the 4-HBA biosynthesis pathway was recreated in by expressing a highly 4-HBA-resistant chorismate pyruvate-lyase (UbiC) from the intestinal bacterium To enhance the yield of 4-HBA, we reduced the formation of by-products, such as 1,3-dihydroxyacetone and pyruvate, by deleting , a gene coding for a haloacid dehalogenase superfamily phosphatase, and , a gene coding for a pyruvate kinase, from the bacterial chromosome. The maximum concentration of 4-HBA produced by the resultant strain was 36.6 g/liter, with a yield of 41% (mol/mol) glucose after incubation for 24 h in minimal medium in an aerobic growth-arrested bioprocess using a jar fermentor. To our knowledge, this is the highest concentration of 4-HBA produced by a metabolically engineered microorganism ever reported. Since aromatic compound 4-HBA has been chemically produced from petroleum-derived phenol for a long time, eco-friendly bioproduction of 4-HBA from biomass resources is desired in order to address environmental issues. In microbial chemical production, product toxicity often causes problems, but we confirmed that wild-type has high tolerance to the target 4-HBA. A growth-arrested bioprocess using this microorganism has been successfully used for the production of various compounds, such as biofuels, organic acids, and amino acids. However, no production method has been applied for aromatic compounds to date. In this study, we screened for a novel final reaction enzyme possessing characteristics superior to those in previously employed microbial 4-HBA production. We demonstrated that the use of the highly 4-HBA-resistant UbiC from the intestinal bacterium is very effective in increasing 4-HBA production.

摘要

该菌被代谢工程改造以生产 4-羟基苯甲酸(4-HBA),这是一种有价值的芳香族化合物,可用作生产液晶聚合物和对羟基苯甲酸酯的原料。与之前用于生产基因工程 4-HBA 的报道宿主相比,该菌对 4-HBA 毒性具有更高的耐受性。为了获得更高的 4-HBA 产量,我们采用逐步过表达莽草酸途径中的所有七个靶基因。具体来说,来自恶臭假单胞菌的突变 基因(编码 3-脱氧-d-阿拉伯庚酮糖酸 7-磷酸(DAHP)合酶)和来自大肠杆菌的野生型 基因(编码分支酸合酶、磷酸烯醇式丙酮酸莽草酸激酶和 3-脱氢奎尼酸合酶)的多个染色体整合,有效地提高了产物产量。在 中,通过表达来自肠道细菌的高度耐 4-HBA 的分支酸丙酮酸-裂合酶(UbiC),重新构建了 4-HBA 生物合成途径的最后一步。为了提高 4-HBA 的产量,我们通过删除细菌染色体上编码 haloacid dehalogenase superfamily phosphatase 的 基因和编码丙酮酸激酶的 基因,减少了副产物如 1,3-二羟基丙酮和丙酮酸的形成。该菌株产生的 4-HBA 的最大浓度为 36.6 g/L,在有氧生长停滞生物过程中,在使用罐式发酵罐的最小培养基中孵育 24 小时后,以葡萄糖计的产率为 41%(摩尔/摩尔)。据我们所知,这是迄今为止通过代谢工程微生物产生的最高浓度的 4-HBA。由于芳香族化合物 4-HBA 长期以来一直由石油衍生的苯酚化学合成,因此需要从生物质资源中进行环保的生物生产,以解决环境问题。在微生物化学生产中,产物毒性通常会引起问题,但我们证实野生型 对目标 4-HBA 具有高耐受性。使用该微生物的生长停滞生物过程已成功用于生产各种化合物,如生物燃料、有机酸和氨基酸。然而,迄今为止尚未应用任何生产方法用于芳香族化合物。在这项研究中,我们筛选了一种具有优于以前用于微生物 4-HBA 生产的新型最终反应酶的特性的新型最终反应酶。我们证明,使用来自肠道细菌的高度耐 4-HBA 的 UbiC 非常有效地提高了 4-HBA 的产量。

相似文献

2
Rational engineering of the shikimate and related pathways in Corynebacterium glutamicum for 4-hydroxybenzoate production.
J Biotechnol. 2018 Sep 20;282:92-100. doi: 10.1016/j.jbiotec.2018.07.016. Epub 2018 Jul 19.
3
Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli.
Appl Microbiol Biotechnol. 2016 Jan;100(1):135-45. doi: 10.1007/s00253-015-6976-4. Epub 2015 Sep 21.
5
Corynebacterium glutamicum as platform for the production of hydroxybenzoic acids.
Microb Cell Fact. 2018 May 12;17(1):70. doi: 10.1186/s12934-018-0923-x.
6
Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction.
Metab Eng. 2016 Nov;38:204-216. doi: 10.1016/j.ymben.2016.08.005. Epub 2016 Aug 20.
7
Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
Microb Cell Fact. 2016 Oct 7;15(1):174. doi: 10.1186/s12934-016-0566-8.
9
Stepwise metabolic engineering of Corynebacterium glutamicum for the production of phenylalanine.
J Gen Appl Microbiol. 2023 Jun 22;69(1):11-23. doi: 10.2323/jgam.2022.08.002. Epub 2022 Aug 22.

引用本文的文献

1
Engineering of Corynebacterium glutamicum for the synthesis of aromatic compounds.
Appl Microbiol Biotechnol. 2025 May 30;109(1):132. doi: 10.1007/s00253-025-13520-3.
2
The Application of Multiple Strategies to Enhance Methylparaben Synthesis Using the Engineered .
Biology (Basel). 2025 Apr 25;14(5):469. doi: 10.3390/biology14050469.
3
Production of aromatic amino acids and their derivatives by Escherichia coli and Corynebacterium glutamicum.
World J Microbiol Biotechnol. 2025 Feb 7;41(2):65. doi: 10.1007/s11274-025-04264-3.
4
Microbial engineering for monocyclic aromatic compounds production.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf003.
5
De novo biosynthesis of β-arbutin in Corynebacterium glutamicum via pathway engineering and process optimization.
Biotechnol Biofuels Bioprod. 2024 Jun 25;17(1):88. doi: 10.1186/s13068-024-02540-2.
6
Structural and Biochemical Analysis of 3-Dehydroquinate Dehydratase from .
J Microbiol Biotechnol. 2023 Dec 28;33(12):1595-1605. doi: 10.4014/jmb.2305.05018. Epub 2023 Aug 18.
8
Cinnamic acid and p-coumaric acid are metabolized to 4-hydroxybenzoic acid by Yarrowia lipolytica.
AMB Express. 2023 Aug 10;13(1):84. doi: 10.1186/s13568-023-01590-3.
10
Engineering Corynebacterium glutamicum for de novo production of 2-phenylethanol from lignocellulosic biomass hydrolysate.
Biotechnol Biofuels Bioprod. 2023 May 4;16(1):75. doi: 10.1186/s13068-023-02327-x.

本文引用的文献

1
Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction.
Metab Eng. 2016 Nov;38:204-216. doi: 10.1016/j.ymben.2016.08.005. Epub 2016 Aug 20.
3
Taxonomy, Physiology, and Natural Products of Actinobacteria.
Microbiol Mol Biol Rev. 2015 Nov 25;80(1):1-43. doi: 10.1128/MMBR.00019-15. Print 2016 Mar.
4
Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum.
Appl Microbiol Biotechnol. 2015 Feb;99(3):1165-72. doi: 10.1007/s00253-014-6223-4. Epub 2014 Nov 26.
5
Microbial tolerance engineering toward biochemical production: from lignocellulose to products.
Curr Opin Biotechnol. 2014 Oct;29:99-106. doi: 10.1016/j.copbio.2014.03.005. Epub 2014 Apr 17.
6
Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation.
Biotechnol Bioeng. 2013 Nov;110(11):2938-48. doi: 10.1002/bit.24961. Epub 2013 Jun 6.
7
Identification of a gene involved in plasmid structural instability in Corynebacterium glutamicum.
Appl Microbiol Biotechnol. 2013 Sep;97(18):8219-26. doi: 10.1007/s00253-013-4934-6. Epub 2013 May 24.
8
Characterization of shikimate dehydrogenase homologues of Corynebacterium glutamicum.
Appl Microbiol Biotechnol. 2013 Sep;97(18):8139-49. doi: 10.1007/s00253-012-4659-y. Epub 2013 Jan 10.
9
Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions.
Appl Environ Microbiol. 2013 Feb;79(4):1250-7. doi: 10.1128/AEM.02806-12. Epub 2012 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验