Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan.
Microb Cell Fact. 2023 Aug 29;22(1):168. doi: 10.1186/s12934-023-02179-y.
Microbial production of aromatic chemicals is an attractive method for obtaining high-performance materials from biomass resources. A non-proteinogenic amino acid, 4-amino-3-hydroxybenzoic acid (4,3-AHBA), is expected to be a precursor of highly functional polybenzoxazole polymers; however, methods for its microbial production have not been reported. In this study, we attempted to produce 4,3-AHBA from glucose by introducing 3-hydroxylation of 4-aminobenzoic acid (4-ABA) into the metabolic pathway of an industrially relevant bacterium, Corynebacterium glutamicum.
Six different 4-hydroxybenzoate 3-hydroxylases (PHBHs) were heterologously expressed in C. glutamicum strains, which were then screened for the production of 4,3-AHBA by culturing with glucose as a carbon source. The highest concentration of 4,3-AHBA was detected in the strain expressing PHBH from Caulobacter vibrioides (CvPHBH). A combination of site-directed mutagenesis in the active site and random mutagenesis via laccase-mediated colorimetric assay allowed us to obtain CvPHBH mutants that enhanced 4,3-AHBA productivity under deep-well plate culture conditions. The recombinant C. glutamicum strain expressing CvPHBH and having an enhanced 4-ABA biosynthetic pathway produced 13.5 g/L (88 mM) 4,3-AHBA and 0.059 g/L (0.43 mM) precursor 4-ABA in fed-batch culture using a nutrient-rich medium. The culture of this strain in the chemically defined CGXII medium yielded 9.8 C-mol% of 4,3-AHBA from glucose, corresponding to 12.8% of the theoretical maximum yield (76.8 C-mol%) calculated using a genome-scale metabolic model of C. glutamicum.
Identification of PHBH mutants that could efficiently catalyze the 3-hydroxylation of 4-ABA in C. glutamicum allowed us to construct an artificial biosynthetic pathway capable of producing 4,3-AHBA on a gram-scale using glucose as the carbon source. These findings will contribute to a better understanding of enzyme-catalyzed regioselective hydroxylation of aromatic chemicals and to the diversification of biomass-derived precursors for high-performance materials.
微生物生产芳香族化学品是从生物质资源中获得高性能材料的一种有吸引力的方法。一种非蛋白质氨基酸,4-氨基-3-羟基苯甲酸(4,3-AHBA),有望成为高度功能性聚苯并恶唑聚合物的前体;然而,其微生物生产方法尚未报道。在这项研究中,我们试图通过将 4-氨基苯甲酸(4-ABA)的 3-羟化作用引入工业相关细菌谷氨酸棒杆菌的代谢途径中,从葡萄糖中生产 4,3-AHBA。
在谷氨酸棒杆菌菌株中异源表达了六种不同的 4-羟基苯甲酸 3-羟化酶(PHBHs),然后通过以葡萄糖为碳源进行培养来筛选 4,3-AHBA 的生产。在表达来自喇叭杆菌(CvPHBH)的 PHBH 的菌株中检测到 4,3-AHBA 的最高浓度。在活性位点的定点突变和通过漆酶介导的比色测定的随机突变的组合使我们能够获得在深孔板培养条件下提高 4,3-AHBA 生产力的 CvPHBH 突变体。在使用营养丰富的培养基进行分批补料培养时,表达 CvPHBH 并具有增强的 4-ABA 生物合成途径的重组谷氨酸棒杆菌菌株生产了 13.5 g/L(88 mM)4,3-AHBA 和 0.059 g/L(0.43 mM)前体 4-ABA。该菌株在化学定义的 CGXII 培养基中的培养从葡萄糖中产生了 9.8 C-摩尔%的 4,3-AHBA,对应于使用谷氨酸棒杆菌的基因组规模代谢模型计算的理论最大产率(76.8 C-摩尔%)的 12.8%。
鉴定出能够在谷氨酸棒杆菌中有效催化 4-ABA 3-羟化作用的 PHBH 突变体,使我们能够构建一种能够使用葡萄糖作为碳源在克级规模生产 4,3-AHBA 的人工生物合成途径。这些发现将有助于更好地理解酶催化的芳香族化学品的区域选择性羟化作用,并为高性能材料的生物量衍生前体的多样化做出贡献。