Suppr超能文献

在缺氧条件下工程化谷氨酸棒杆菌生产高产量 L-缬氨酸。

Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions.

机构信息

Research Institute of Innovative Technology for the Earth, Kizugawadai, Kizugawa, Kyoto, Japan.

出版信息

Appl Environ Microbiol. 2013 Feb;79(4):1250-7. doi: 10.1128/AEM.02806-12. Epub 2012 Dec 14.

Abstract

We previously demonstrated efficient L-valine production by metabolically engineered Corynebacterium glutamicum under oxygen deprivation. To achieve the high productivity, a NADH/NADPH cofactor imbalance during the synthesis of l-valine was overcome by engineering NAD-preferring mutant acetohydroxy acid isomeroreductase (AHAIR) and using NAD-specific leucine dehydrogenase from Lysinibacillus sphaericus. Lactate as a by-product was largely eliminated by disrupting the lactate dehydrogenase gene ldhA. Nonetheless, a few other by-products, particularly succinate, were still produced and acted to suppress the L-valine yield. Eliminating these by-products therefore was deemed key to improving theL-valine yield. By additionally disrupting the phosphoenolpyruvate carboxylase gene ppc, succinate production was effectively suppressed, but both glucose consumption and L-valine production dropped considerably due to the severely elevated intracellular NADH/NAD(+) ratio. In contrast, this perturbed intracellular redox state was more than compensated for by deletion of three genes associated with NADH-producing acetate synthesis and overexpression of five glycolytic genes, including gapA, encoding NADH-inhibited glyceraldehyde-3-phosphate dehydrogenase. Inserting feedback-resistant mutant acetohydroxy acid synthase and NAD-preferring mutant AHAIR in the chromosome resulted in higher L-valine yield and productivity. Deleting the alanine transaminase gene avtA suppressed alanine production. The resultant strain produced 1,280 mM L-valine at a yield of 88% mol mol of glucose(-1) after 24 h under oxygen deprivation, a vastly improved yield over our previous best.

摘要

我们之前已经证明,在缺氧条件下,通过对谷氨酸棒杆菌进行代谢工程改造,可以高效生产 L-缬氨酸。为了实现高生产力,通过工程化 NAD+偏好型乙酰羟酸合酶异构还原酶(AHAIR)和使用来自解淀粉芽孢杆菌的 NAD 特异性亮氨酸脱氢酶克服了 l-缬氨酸合成过程中 NADH/NADPH 辅因子失衡的问题。通过敲除乳酸脱氢酶基因 ldhA,大大减少了副产物乳酸的产生。尽管如此,仍会产生一些其他副产物,特别是琥珀酸,这仍然会抑制 L-缬氨酸的产量。因此,消除这些副产物被认为是提高 L-缬氨酸产量的关键。通过另外敲除磷酸烯醇丙酮酸羧激酶基因 ppc,有效地抑制了琥珀酸的产生,但由于细胞内 NADH/NAD+ 比值严重升高,葡萄糖消耗和 L-缬氨酸的生产都明显下降。相比之下,通过删除与 NADH 产生的乙酸合成相关的三个基因,并过表达包括编码受 NADH 抑制的甘油醛-3-磷酸脱氢酶的 gapA 在内的五个糖酵解基因,这种失调的细胞内氧化还原状态得到了很好的补偿。在染色体中插入反馈抗性突变的乙酰羟酸合酶和 NAD 偏好型突变的 AHAIR 导致 L-缬氨酸产量和生产效率更高。删除丙氨酸转氨酶基因 avtA 抑制了丙氨酸的产生。在缺氧条件下培养 24 小时后,该菌株生产 1,280 mM L-缬氨酸,葡萄糖摩尔收率为 88%,与我们之前的最佳结果相比有了很大的提高。

相似文献

引用本文的文献

本文引用的文献

7
Corynebacterium glutamicum tailored for efficient isobutanol production.经过改造的谷氨酸棒杆菌可高效生产异丁醇。
Appl Environ Microbiol. 2011 May;77(10):3300-10. doi: 10.1128/AEM.02972-10. Epub 2011 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验