Department of Neuropharmacology, University of Yamanashi, Yamanashi 409-3898, Japan.
Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki 444-8787, Japan, and.
J Neurosci. 2018 Feb 7;38(6):1383-1395. doi: 10.1523/JNEUROSCI.2625-17.2017. Epub 2018 Jan 5.
Fine processes of astrocytes enwrap synapses and are well positioned to sense neuronal information via synaptic transmission. In rodents, astrocyte processes sense synaptic transmission via Gq-protein coupled receptors (GqPCR), including the P2Y1 receptor (P2Y1R), to generate Ca signals. Astrocytes display numerous spontaneous microdomain Ca signals; however, it is not clear whether such signals are due to local synaptic transmission and/or in what timeframe astrocytes sense local synaptic transmission. To ask whether GqPCRs mediate microdomain Ca signals, we engineered mice (both sexes) to specifically overexpress P2Y1Rs in astrocytes, and we visualized Ca signals via a genetically encoded Ca indicator, GCaMP6f, in astrocytes from adult mice. Astrocytes overexpressing P2Y1Rs showed significantly larger Ca signals in response to exogenously applied ligand and to repetitive electrical stimulation of axons compared with controls. However, we found no evidence of increased microdomain Ca signals. Instead, Ca waves appeared and propagated to occupy areas that were up to 80-fold larger than microdomain Ca signals. These Ca waves accounted for only 2% of total Ca events, but they were 1.9-fold larger and 2.9-fold longer in duration than microdomain Ca signals at processes. Ca waves did not require action potentials for their generation and occurred in a probenecid-sensitive manner, indicating that the endogenous ligand for P2Y1R is elevated independently of synaptic transmission. Our data suggest that spontaneous microdomain Ca signals occur independently of P2Y1R activation and that astrocytes may not encode neuronal information in response to synaptic transmission at a point source of neurotransmitter release. Astrocytes are thought to enwrap synapses with their processes to receive neuronal information via Gq-protein coupled receptors (GqPCRs). Astrocyte processes display numerous microdomain Ca signals that occur spontaneously. To determine whether GqPCRs play a role in microdomain Ca signals and the timeframe in which astrocytes sense neuronal information, we engineered mice whose astrocytes specifically overexpress the P2Y1 receptor, a major GqPCR in astrocytes. We found that overexpression of P2Y1 receptors in astrocytes did not increase microdomain Ca signals in astrocyte processes but caused Ca wavelike signals. Our data indicate that spontaneous microdomain Ca signals do not require activation of P2Y1 receptors.
星形胶质细胞的精细过程包裹着突触,并通过突触传递很好地定位以感知神经元信息。在啮齿动物中,星形胶质细胞通过 Gq-蛋白偶联受体 (GqPCR) 感知突触传递,包括 P2Y1 受体 (P2Y1R),以产生 Ca 信号。星形胶质细胞显示出许多自发的微域 Ca 信号;然而,尚不清楚这些信号是否是由于局部突触传递引起的,以及星形胶质细胞在什么时间范围内感知局部突触传递。为了探讨 GqPCR 是否介导微域 Ca 信号,我们通过基因工程使 P2Y1R 在星形胶质细胞中特异性过表达,并用基因编码的 Ca 指示剂 GCaMP6f 来可视化成年小鼠星形胶质细胞中的 Ca 信号。与对照组相比,过表达 P2Y1R 的星形胶质细胞对外部施加的配体和重复的轴突电刺激显示出明显更大的 Ca 信号。然而,我们没有发现微域 Ca 信号增加的证据。相反,Ca 波出现并传播,占据的区域比微域 Ca 信号大 80 倍。这些 Ca 波仅占总 Ca 事件的 2%,但它们的幅度比微域 Ca 信号大 1.9 倍,持续时间长 2.9 倍。Ca 波的产生不需要动作电位,并且以丙磺舒敏感的方式发生,表明 P2Y1R 的内源性配体的升高独立于突触传递。我们的数据表明,自发的微域 Ca 信号的发生独立于 P2Y1R 的激活,并且星形胶质细胞可能不会以神经递质释放的点源为响应来编码神经元信息。人们认为星形胶质细胞用其过程包裹突触,以通过 Gq-蛋白偶联受体 (GqPCR) 接收神经元信息。星形胶质细胞过程显示出许多自发的微域 Ca 信号。为了确定 GqPCR 是否在微域 Ca 信号及其感知神经元信息的时间范围内发挥作用,我们设计了一种基因工程小鼠,其星形胶质细胞特异性过表达 P2Y1 受体,这是星形胶质细胞中的一种主要 GqPCR。我们发现,星形胶质细胞中 P2Y1 受体的过表达并没有增加星形胶质细胞过程中的微域 Ca 信号,但引起了 Ca 波样信号。我们的数据表明,自发的微域 Ca 信号不需要 P2Y1 受体的激活。