Tuten William S, Harmening Wolf M, Sabesan Ramkumar, Roorda Austin, Sincich Lawrence C
School of Optometry and Vision Science Graduate Group, University of California, Berkeley, California 94720,
Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany.
J Neurosci. 2017 Sep 27;37(39):9498-9509. doi: 10.1523/JNEUROSCI.0529-17.2017. Epub 2017 Sep 4.
A remarkable feature of human vision is that the retina and brain have evolved circuitry to extract useful spatial and spectral information from signals originating in a photoreceptor mosaic with trichromatic constituents that vary widely in their relative numbers and local spatial configurations. A critical early transformation applied to cone signals is horizontal-cell-mediated lateral inhibition, which imparts a spatially antagonistic surround to individual cone receptive fields, a signature inherited by downstream neurons and implicated in color signaling. In the peripheral retina, the functional connectivity of cone inputs to the circuitry that mediates lateral inhibition is not cone-type specific, but whether these wiring schemes are maintained closer to the fovea remains unsettled, in part because central retinal anatomy is not easily amenable to direct physiological assessment. Here, we demonstrate how the precise topography of the long (L)-, middle (M)-, and short (S)-wavelength-sensitive cones in the human parafovea (1.5° eccentricity) shapes perceptual sensitivity. We used adaptive optics microstimulation to measure psychophysical detection thresholds from individual cones with spectral types that had been classified independently by absorptance imaging. Measured against chromatic adapting backgrounds, the sensitivities of L and M cones were, on average, receptor-type specific, but individual cone thresholds varied systematically with the number of preferentially activated cones in the immediate neighborhood. The spatial and spectral patterns of these interactions suggest that interneurons mediating lateral inhibition in the central retina, likely horizontal cells, establish functional connections with L and M cones indiscriminately, implying that the cone-selective circuitry supporting red-green color vision emerges after the first retinal synapse. We present evidence for spatially antagonistic interactions between individual, spectrally typed cones in the central retina of human observers using adaptive optics. Using chromatic adapting fields to modulate the relative steady-state activity of long (L)- and middle (M)-wavelength-sensitive cones, we found that single-cone detection thresholds varied predictably with the spectral demographics of the surrounding cones. The spatial scale and spectral pattern of these photoreceptor interactions were consistent with lateral inhibition mediated by retinal horizontal cells that receive nonselective input from L and M cones. These results demonstrate a clear link between the neural architecture of the visual system inputs-cone photoreceptors-and visual perception and have implications for the neural locus of the cone-specific circuitry supporting color vision.
人类视觉的一个显著特征是,视网膜和大脑已经进化出相应的神经回路,以便从源自具有三色成分的光感受器镶嵌体的信号中提取有用的空间和光谱信息,这些三色成分在其相对数量和局部空间配置上有很大差异。应用于视锥细胞信号的一个关键早期转换是水平细胞介导的侧向抑制,它为单个视锥细胞感受野赋予了空间拮抗的周边区域,这是下游神经元继承的一个特征,并与颜色信号传导有关。在周边视网膜中,视锥细胞输入到介导侧向抑制的神经回路的功能连接并非视锥细胞类型特异性的,但这些布线方案在更靠近中央凹的区域是否保持不变仍未确定,部分原因是中央视网膜解剖结构不易进行直接的生理学评估。在这里,我们展示了人类中央凹(偏心率1.5°)中长(L)、中(M)和短(S)波长敏感视锥细胞的精确地形图如何塑造感知灵敏度。我们使用自适应光学微刺激来测量来自具有通过吸收率成像独立分类的光谱类型的单个视锥细胞的心理物理学检测阈值。在彩色适应背景下测量时,L视锥细胞和M视锥细胞的灵敏度平均而言是受体类型特异性的,但单个视锥细胞阈值会随着紧邻区域中优先激活的视锥细胞数量而系统地变化。这些相互作用的空间和光谱模式表明,介导中央视网膜侧向抑制的中间神经元(可能是水平细胞)与L视锥细胞和M视锥细胞无差别地建立功能连接,这意味着支持红绿色觉的视锥细胞选择性神经回路在第一个视网膜突触之后出现。我们使用自适应光学技术提供了人类观察者中央视网膜中单个光谱类型视锥细胞之间存在空间拮抗相互作用的证据。使用彩色适应场来调节长(L)和中(M)波长敏感视锥细胞的相对稳态活动,我们发现单个视锥细胞检测阈值随周围视锥细胞的光谱分布而可预测地变化。这些光感受器相互作用的空间尺度和光谱模式与从L视锥细胞和M视锥细胞接收非选择性输入的视网膜水平细胞介导的侧向抑制一致。这些结果证明了视觉系统输入(视锥细胞光感受器)的神经结构与视觉感知之间存在明确联系,并对支持色觉的视锥细胞特异性神经回路的神经位点具有启示意义。