Suppr超能文献

耗散量子动力学的统一随机表述。I. 广义分层方程。

A unified stochastic formulation of dissipative quantum dynamics. I. Generalized hierarchical equations.

机构信息

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.

出版信息

J Chem Phys. 2018 Jan 7;148(1):014103. doi: 10.1063/1.5018725.

Abstract

We extend a standard stochastic theory to study open quantum systems coupled to a generic quantum environment. We exemplify the general framework by studying a two-level quantum system coupled bilinearly to the three fundamental classes of non-interacting particles: bosons, fermions, and spins. In this unified stochastic approach, the generalized stochastic Liouville equation (SLE) formally captures the exact quantum dissipations when noise variables with appropriate statistics for different bath models are applied. Anharmonic effects of a non-Gaussian bath are precisely encoded in the bath multi-time correlation functions that noise variables have to satisfy. Starting from the SLE, we devise a family of generalized hierarchical equations by averaging out the noise variables and expand bath multi-time correlation functions in a complete basis of orthonormal functions. The general hierarchical equations constitute systems of linear equations that provide numerically exact simulations of quantum dynamics. For bosonic bath models, our general hierarchical equation of motion reduces exactly to an extended version of hierarchical equation of motion which allows efficient simulation for arbitrary spectral densities and temperature regimes. Similar efficiency and flexibility can be achieved for the fermionic bath models within our formalism. The spin bath models can be simulated with two complementary approaches in the present formalism. (I) They can be viewed as an example of non-Gaussian bath models and be directly handled with the general hierarchical equation approach given their multi-time correlation functions. (II) Alternatively, each bath spin can be first mapped onto a pair of fermions and be treated as fermionic environments within the present formalism.

摘要

我们扩展了一种标准的随机理论,以研究与通用量子环境耦合的开放量子系统。我们通过研究与三种基本的非相互作用粒子(玻色子、费米子和自旋)线性耦合的双能级量子系统来说明一般框架。在这种统一的随机方法中,广义随机李雅普诺夫方程(SLE)正式捕获了当为不同的浴模型应用具有适当统计的噪声变量时的精确量子耗散。非高斯浴的非谐效应精确地编码在噪声变量必须满足的浴多时间相关函数中。从 SLE 出发,我们通过平均化噪声变量并在正交函数的完备基上展开浴多时间相关函数,设计了一族广义层次方程。一般的层次方程构成了线性方程组,为量子动力学提供了数值上精确的模拟。对于玻色子浴模型,我们的一般层次运动方程精确地简化为允许对任意谱密度和温度范围进行有效模拟的扩展层次运动方程。在我们的形式中,也可以为费米子浴模型实现类似的效率和灵活性。在当前形式中,可以使用两种互补方法来模拟自旋浴模型。(I)它们可以被视为非高斯浴模型的一个例子,并通过其多时间相关函数直接用广义层次方程方法处理。(II)或者,可以将每个浴自旋首先映射到一对费米子上,并在当前形式中作为费米子环境来处理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验