Suppr超能文献

从短时间轨迹中提取动力学信息:有损腔极化激元的弛豫和无序

Extracting kinetic information from short-time trajectories: relaxation and disorder of lossy cavity polaritons.

作者信息

Wu Andrew, Cerrillo Javier, Cao Jianshu

机构信息

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

Área de Física Aplicada, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain.

出版信息

Nanophotonics. 2024 Apr 17;13(14):2575-2590. doi: 10.1515/nanoph-2023-0831. eCollection 2024 Jun.

Abstract

The emerging field of molecular cavity polaritons has stimulated a surge of experimental and theoretical activities and presents a unique opportunity to develop the many-body simulation methodology. This paper presents a numerical scheme for the extraction of key kinetic information of lossy cavity polaritons based on the transfer tensor method (TTM). Steady state, relaxation timescales, and oscillatory phenomena can all be deduced directly from a set of transfer tensors without the need for long-time simulation. Moreover, we generalize TTM to disordered systems by sampling dynamical maps and achieve fast convergence to disordered-averaged dynamics using a small set of realizations. Together, these techniques provide a toolbox for characterizing the interplay of cavity loss, disorder, and cooperativity in polariton relaxation and allow us to predict unusual dependences on the initial excitation state, photon decay rate, strength of disorder, and the type of cavity models. Thus, using the example of cavity polaritons, we have demonstrated significant potential in the use of the TTM toward both the efficient computation of long-time polariton dynamics and the extraction of crucial kinetic information about polariton relaxation from a small set of short-time trajectories.

摘要

分子腔极化激元这一新兴领域激发了大量的实验和理论研究活动,并为发展多体模拟方法提供了独特的契机。本文提出了一种基于转移张量法(TTM)提取有损腔极化激元关键动力学信息的数值方案。稳态、弛豫时间尺度和振荡现象都可以直接从一组转移张量中推导出来,而无需进行长时间模拟。此外,我们通过对动力学映射进行采样将TTM推广到无序系统,并使用少量实现快速收敛到无序平均动力学。这些技术共同提供了一个工具箱,用于表征腔损耗、无序和协同性在极化激元弛豫中的相互作用,并使我们能够预测对初始激发态、光子衰减率、无序强度和腔模型类型的异常依赖性。因此,以腔极化激元为例,我们展示了TTM在高效计算长时间极化激元动力学以及从少量短时间轨迹中提取有关极化激元弛豫的关键动力学信息方面的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2923/11636469/df260c43bcaf/j_nanoph-2023-0831_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验