Barford William
Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, U.K.
J Chem Theory Comput. 2024 Aug 13;20(15):6510-6517. doi: 10.1021/acs.jctc.4c00568. Epub 2024 Jul 17.
Stochastic quantum Liouville equations (SQLE) are widely used to model energy and charge dynamics in molecular systems. The Haken-Strobl-Reineker (HSR) SQLE is a particular paradigm in which the dynamical noise that destroys quantum coherences arises from a white noise (i.e., constant-frequency) spectrum. A system subject to the HSR SQLE thus evolves to its "high-temperature" limit, whereby all the eigenstates are equally populated. This result would seem to imply that the predictions of the HSR model, e.g., the temperature dependence of the diffusion coefficient, have no validity for temperatures lower than the particle bandwidth. The purpose of this paper is to show that this assumption is incorrect for translationally invariant systems. In particular, provided that the diffusion coefficient is determined via the mean-squared-displacement, considerations about detailed-balance are irrelevant. Consequently, the high-temperature prediction for the temperature dependence of the diffusion coefficient may be extrapolated to lower temperatures, provided that the bath remains classical. Thus, for diagonal dynamical disorder the long-time diffusion coefficient, () = /, while for both diagonal and off-diagonal disorder, () = / + , where ≪ . An appendix discusses an alternative interpretation from the HSR model of the "quantum to classical" dynamics transition, whereby the dynamics is described as stochastically punctuated coherent motion.
随机量子刘维尔方程(SQLE)被广泛用于对分子系统中的能量和电荷动力学进行建模。哈肯 - 施特罗布尔 - 赖内克(HSR)SQLE是一种特殊的范式,其中破坏量子相干性的动力学噪声源于白噪声(即恒定频率)谱。因此,受HSR SQLE作用的系统会演化到其“高温”极限,此时所有本征态的占据概率相等。这一结果似乎意味着HSR模型的预测,例如扩散系数对温度的依赖性,在温度低于粒子带宽时是无效的。本文的目的是表明对于平移不变系统,这一假设是不正确的。特别是,如果扩散系数是通过均方位移来确定的,那么关于细致平衡的考虑就无关紧要了。因此,只要浴保持经典,扩散系数对温度依赖性的高温预测就可以外推到较低温度。因此,对于对角动态无序,长时间扩散系数(D(t) = D_0/t),而对于对角和非对角无序,(D(t) = D_0/t + D_1),其中(D_1 \ll D_0)。附录讨论了从HSR模型对“量子到经典”动力学转变的另一种解释,即动力学被描述为随机间断的相干运动。