CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China , Hefei 230026, China.
Institute of Environmental Health and Pollution Control, Guangdong University of Technology , Guangzhou 510006, China.
Environ Sci Technol. 2018 Feb 6;52(3):1393-1403. doi: 10.1021/acs.est.7b04030. Epub 2018 Jan 25.
The presence of Good's buffers caused rapid ZVI corrosion and a dramatic release of Fe(II) leading to the Fe(II)-catalyzed transformation of ferrihydrite to lepidocrocite and/or the direct formation of lepidocrocite from the oxidation of Fe(II) in the pH range 4.0-6.2. In comparison, in the absence of Good's buffers, elution of Fe(II) was insignificant with ferrihydrite being the only Fe(III) oxyhydroxide detected following the oxidative transformation of ZVI. The rapid ZVI corrosion in the presence of Good's buffer is possibly due to either (i) disruption of the Fe oxide surface layer as a result of attack by Good's buffers and/or (ii) interaction of Good's buffer with the outer Fe oxide surface and surface-associated Fe(II)/Fe(III) causing the Fe oxide surface layers to be more porous with both these processes facilitating continuous O access to the Fe(0) core and allowing the diffusion of Fe atoms outward. Our results further show that the deprotonated forms of Good's buffers and the surface charge of the Fe oxides formed at the ZVI surface strongly affect the sorption of the target compound (i.e., formate) and hence the oxidation of these compounds via surface-associated Fe(II)-mediated heterogeneous Fenton processes.
Good's 缓冲剂的存在导致了 ZVI 的快速腐蚀和 Fe(II)的剧烈释放,从而在 pH 值为 4.0-6.2 的范围内促进了水铁矿向纤铁矿的 Fe(II)催化转化,以及/或直接由 Fe(II)氧化形成纤铁矿。相比之下,在没有 Good's 缓冲剂的情况下,洗脱的 Fe(II)可以忽略不计,并且在 ZVI 的氧化转化后,仅检测到水铁矿是唯一的 Fe(III)氢氧化物。Good's 缓冲剂存在下 ZVI 的快速腐蚀可能是由于(i)Good's 缓冲剂的攻击破坏了 Fe 氧化物表面层,和/或(ii)Good's 缓冲剂与外 Fe 氧化物表面和表面相关的 Fe(II)/Fe(III)相互作用,导致 Fe 氧化物表面层更具多孔性,这两个过程都促进了 O 向 Fe(0)核心的连续进入,并允许 Fe 原子向外扩散。我们的结果还表明,Good's 缓冲剂的去质子形式和 ZVI 表面形成的 Fe 氧化物的表面电荷强烈影响目标化合物(即甲酸盐)的吸附,从而通过表面相关的 Fe(II)介导的非均相芬顿过程氧化这些化合物。