Suppr超能文献

多级生存分析教程:方法、模型与应用

A Tutorial on Multilevel Survival Analysis: Methods, Models and Applications.

作者信息

Austin Peter C

机构信息

Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada.

出版信息

Int Stat Rev. 2017 Aug;85(2):185-203. doi: 10.1111/insr.12214. Epub 2017 Mar 24.

Abstract

Data that have a multilevel structure occur frequently across a range of disciplines, including epidemiology, health services research, public health, education and sociology. We describe three families of regression models for the analysis of multilevel survival data. First, Cox proportional hazards models with mixed effects incorporate cluster-specific random effects that modify the baseline hazard function. Second, piecewise exponential survival models partition the duration of follow-up into mutually exclusive intervals and fit a model that assumes that the hazard function is constant within each interval. This is equivalent to a Poisson regression model that incorporates the duration of exposure within each interval. By incorporating cluster-specific random effects, generalised linear mixed models can be used to analyse these data. Third, after partitioning the duration of follow-up into mutually exclusive intervals, one can use discrete time survival models that use a complementary log-log generalised linear model to model the occurrence of the outcome of interest within each interval. Random effects can be incorporated to account for within-cluster homogeneity in outcomes. We illustrate the application of these methods using data consisting of patients hospitalised with a heart attack. We illustrate the application of these methods using three statistical programming languages (R, SAS and Stata).

摘要

具有多层次结构的数据在包括流行病学、卫生服务研究、公共卫生、教育和社会学在内的一系列学科中经常出现。我们描述了用于分析多层次生存数据的三类回归模型。第一,具有混合效应的Cox比例风险模型纳入了特定于聚类的随机效应,这些效应会修改基线风险函数。第二,分段指数生存模型将随访持续时间划分为相互排斥的区间,并拟合一个假设风险函数在每个区间内恒定的模型。这等同于一个纳入每个区间暴露持续时间的泊松回归模型。通过纳入特定于聚类的随机效应,广义线性混合模型可用于分析这些数据。第三,在将随访持续时间划分为相互排斥的区间后,可以使用离散时间生存模型,该模型使用互补对数-对数广义线性模型来对每个区间内感兴趣结局的发生情况进行建模。可以纳入随机效应以考虑聚类内结局的同质性。我们使用心脏病发作住院患者的数据来说明这些方法的应用。我们使用三种统计编程语言(R、SAS和Stata)来说明这些方法的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65cf/5756088/f9e9e7f25b94/nihms6861f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验