Suppr超能文献

评估从临床报告中提取患者补充剂使用情况的自动方法。

Evaluating Automatic Methods to Extract Patients' Supplement Use from Clinical Reports.

作者信息

Fan Yadan, He Lu, Zhang Rui

机构信息

Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA.

Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA.

出版信息

Proceedings (IEEE Int Conf Bioinformatics Biomed). 2017 Nov;2017:1258-1261. doi: 10.1109/BIBM.2017.8217839. Epub 2017 Dec 18.

Abstract

The widespread prevalence of dietary supplements has drawn extensive attention due to the safety and efficacy issue. Clinical notes document a great amount of detailed information on dietary supplement usage, thus providing a rich source for clinical research on supplement safety surveillance. Identification the use status of dietary supplements is one of the initial steps for the ultimate goal of the supplement safety surveillance. In this study, we built rule-based and machine learning-based classifiers to automatically classify the use status of supplements into four categories: Continuing (C), Discontinued (D), Started (S), and Unclassified (U). In comparison to the machine learning classifier trained on the same datasets, the rule-based classifier showed a better performance with F-measure in the C, D, S, U status of 0.93, 0.98, 0.95, and 0.83, respectively. We further analyzed the errors generated by the rule-based classifier. The classifier can be potentially applied to extract supplement information from clinical notes for supporting research and clinical practice related to patient safety on supplement usage.

摘要

膳食补充剂的广泛流行因其安全性和有效性问题而备受关注。临床记录记载了大量关于膳食补充剂使用的详细信息,从而为补充剂安全监测的临床研究提供了丰富的来源。识别膳食补充剂的使用状况是补充剂安全监测最终目标的初步步骤之一。在本研究中,我们构建了基于规则和基于机器学习的分类器,以自动将补充剂的使用状况分为四类:持续使用(C)、停止使用(D)、开始使用(S)和未分类(U)。与在相同数据集上训练的机器学习分类器相比,基于规则的分类器表现更好,在C、D、S、U状态下的F值分别为0.93、0.98、0.95和0.83。我们进一步分析了基于规则的分类器产生的错误。该分类器有可能应用于从临床记录中提取补充剂信息,以支持与补充剂使用患者安全相关的研究和临床实践。

相似文献

1
Evaluating Automatic Methods to Extract Patients' Supplement Use from Clinical Reports.评估从临床报告中提取患者补充剂使用情况的自动方法。
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2017 Nov;2017:1258-1261. doi: 10.1109/BIBM.2017.8217839. Epub 2017 Dec 18.
3
Classification of Use Status for Dietary Supplements in Clinical Notes.临床记录中膳食补充剂使用状态的分类
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2016 Dec;2016:1054-1061. doi: 10.1109/BIBM.2016.7822668. Epub 2017 Jan 19.
4
Classifying Supplement Use Status in Clinical Notes.在临床记录中对补充剂使用情况进行分类。
AMIA Jt Summits Transl Sci Proc. 2017 Jul 26;2017:493-501. eCollection 2017.
9
Discovering Fine-grained Sentiment in Suicide Notes.发现自杀遗书里的细粒度情感。
Biomed Inform Insights. 2012;5(Suppl. 1):137-45. doi: 10.4137/BII.S8963. Epub 2012 Jan 30.

本文引用的文献

1
Classification of Use Status for Dietary Supplements in Clinical Notes.临床记录中膳食补充剂使用状态的分类
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2016 Dec;2016:1054-1061. doi: 10.1109/BIBM.2016.7822668. Epub 2017 Jan 19.
2
Classifying Supplement Use Status in Clinical Notes.在临床记录中对补充剂使用情况进行分类。
AMIA Jt Summits Transl Sci Proc. 2017 Jul 26;2017:493-501. eCollection 2017.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验