MS Genetics, Department of Neurology, School of Medicine, University of California San Francisco (UCSF), San Francisco, CA, USA.
MS Genetics, Department of Neurology, School of Medicine, University of California San Francisco (UCSF), San Francisco, CA, USA/Université de Nantes, INSERM, UMR 1064, ATIP-Avenir, Equipe 5 Centre de Recherche en Transplantation et Immunologie, Nantes, France.
Mult Scler. 2019 Mar;25(3):408-418. doi: 10.1177/1352458517747407. Epub 2018 Jan 9.
Electronic medical records (EMR) data are increasingly used in research, but no studies have yet evaluated similarity between EMR and research-quality data and between characteristics of an EMR multiple sclerosis (MS) population and known natural MS history.
To (1) identify MS patients in an EMR system and extract clinical data, (2) compare EMR-extracted data with gold-standard research data, and (3) compare EMR MS population characteristics to expected MS natural history.
Algorithms were implemented to identify MS patients from the University of California San Francisco EMR, de-identify the data and extract clinical variables. EMR-extracted data were compared to research cohort data in a subset of patients.
We identified 4142 MS patients via search of the EMR and extracted their clinical data with good accuracy. EMR and research values showed good concordance for Expanded Disability Status Scale (EDSS), timed-25-foot walk, and subtype. We replicated several expected MS epidemiological features from MS natural history including higher EDSS for progressive versus relapsing-remitting patients and for male versus female patients and increased EDSS with age at examination and disease duration.
Large real-world cohorts algorithmically extracted from the EMR can expand opportunities for MS clinical research.
电子病历(EMR)数据越来越多地用于研究,但目前还没有研究评估 EMR 与研究质量数据之间的相似性,以及 EMR 多发性硬化症(MS)患者人群的特征与已知的 MS 自然史之间的相似性。
(1)从 UCSF 的 EMR 系统中识别 MS 患者并提取临床数据,(2)比较 EMR 提取的数据与黄金标准研究数据,以及(3)比较 EMR-MS 患者人群的特征与预期的 MS 自然史。
开发算法从 UCSF 的 EMR 中识别 MS 患者,对数据进行去标识并提取临床变量。在部分患者中,将 EMR 提取的数据与研究队列数据进行比较。
我们通过搜索 EMR 确定了 4142 名 MS 患者,并准确地提取了他们的临床数据。EMR 和研究值在扩展残疾状况量表(EDSS)、定时 25 英尺步行和亚型方面具有良好的一致性。我们复制了一些从 MS 自然史中得到的预期 MS 流行病学特征,包括进行性患者比复发缓解型患者、男性患者比女性患者的 EDSS 更高,以及检查时的年龄和疾病持续时间与 EDSS 增加有关。
从 EMR 中通过算法提取的大型真实世界队列可以为 MS 临床研究提供更多机会。